【torch】HuggingFace的datasets库中load_dataset方法使用

🤗关注公众号 funNLPer 白嫖畅读全文🤗

datasets是抱抱脸开发的一个数据集python库,可以很方便的从Hugging Face Hub里下载数据,也可很方便的从本地加载数据集,本文主要对load_dataset方法的使用进行详细说明

1. load_dataset参数

load_dataset有以下参数,具体可参考 源码

def load_dataset(
    path: str,
    name: Optional[str] = None,
    data_dir: Optional[str] = None,
    data_files: Union[Dict, List] = None,
    split: Optional[Union[str, Split]] = None,
    cache_dir: Optional[str] = None,
    features: Optional[Features] = None,
    download_config: Optional[DownloadConfig] = None,
    download_mode: Optional[GenerateMode] = None,
    ignore_verifications: bool = False,
    save_infos: bool = False,
    script_version: Optional[Union[str, Version]] = None,
    **config_kwargs,
) -> Union[DatasetDict, Dataset]:
  • path:参数path表示数据集的名字或者路径。可以是如下几种形式(每种形式的使用方式后面会详细说明)
    • 数据集的名字,比如imdb、glue
    • 数据集文件格式,比如json、csv、parquet、txt
    • 数据集目录中的处理数据集的脚本(.py)文件,比如“glue/glue.py”
  • name:参数name表示数据集中的子数据集,当一个数据集包含多个数据集时,就需要这个参数,比如glue数据集下就包含"sst2"、“cola”、"qqp"等多个子数据集,此时就需要指定name来表示加载哪一个子数据集
  • data_dir:数据集所在的目录
  • data_files:数据集文件
  • cache_dir:构建的数据集缓存目录,方便下次快速加载

以上为一些常用且比较重要的参数,其他参数很少用到因此在此处不再详细说明,下面会通过一些case更加具体的说明各种用法

2. 详细用法

2.1 从HuggingFace Hub上加载数据

首先我们可以通过如下方式查看Hubs上有哪些数据集

from datasets import list_datasets

datasets_list = list_datasets()
print( len(datasets_list))
print(datasets_list[:10])

输出如下

47660
['acronym_identification', 'ade_corpus_v2', 'adversarial_qa', 'aeslc', 'afrikaans_ner_corpus', 'ag_news', 'ai2_arc', 'air_dialogue', 'ajgt_twitter_ar', 'allegro_reviews']

后面通过直接指定path等于相关数据集的名字就能下载并加载相关数据集

from datasets import load_dataset
dataset = load_dataset(path='squad', split='train')

2.2 从本地加载数据集

2.2.1 加载指定格式的文件

path参数指定数据集格式

  • json格式,path="json"
  • csv格式, path="csv"
  • 纯文本格式, path="text"
  • dataframe格式, path="panda"
  • 图片,path="imagefolder"

然后用data_files指定文件名称,data_files可以是字符串,列表或者字典,data_dir指定数据集目录。如下case

from datasets import load_dataset
dataset = load_dataset('csv', data_files='my_file.csv')
dataset = load_dataset('csv', data_files=['my_file_1.csv', 'my_file_2.csv', 'my_file_3.csv'])
dataset = load_dataset('csv', data_files={'train':['my_train_file_1.csv','my_train_file_2.csv'],'test': 'my_test_file.csv'})

2.2.2 加载图片

如下我们通过打开指定图片目录进行加载图片数据集

dataset = load_dataset(path="imagefolder",
                       data_dir="D:\Desktop\workspace\code\loaddataset\data\images")
print(dataset)
print(dataset["train"][0])

输出

DatasetDict({
    train: Dataset({
        features: ['image'],
        num_rows: 2
    })
})

{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=800x320 at 0x1E6A636B520>}

图片文本对应
很多情况下加载图片并非只要图片,还会有对应的文本,比如在图片分类的时候,每张图片都对应一个类别。这种情况我们需要在图片所在文件夹中加入一个metadata.jsonl的文件,来指定每个图片对应的类别,格式如下,注意file_name字段必须要有,其他字段可自行命名

{
  "file_name": "1.jpg",
  "class": 1
}
{
  "file_name": "2.png",
  "class": 0
}

然后我们再来运行

dataset = load_dataset(path="imagefolder",
                       data_dir="D:\Desktop\workspace\code\loaddataset\data\images")
print(dataset)
print(dataset["train"][0])

输出如下

DatasetDict({
    train: Dataset({
        features: ['image', 'class'],
        num_rows: 2
    })
})

{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=800x320 at 0x2912172B520>, 'class': 1}

2.2.3 自定义数据集加载脚本

一些情况下加载数据集的逻辑较为复杂,需要自定义加载方式。比如训练ControlNet时,输入有原始图片,边缘图,以及prompt,这时候我们就需要通过在图片所在的目录下写一个python脚本来处理数据加载方式。
如下所示,我们数据处理需要是,每条数据包括两张图片,一个文本。

  • step1: 首先我们先创建一个json文件train.jsonl,把图片和文本对应起来,json文件的格式如下所示
{"text": "pale golden rod circle with old lace background", "image": "images/0.png", "conditioning_image": "conditioning_images/0.png"}
{"text": "light coral circle with white background", "image": "images/1.png", "conditioning_image": "conditioning_images/1.png"}
{"text": "aqua circle with light pink background", "image": "images/2.png", "conditioning_image": "conditioning_images/2.png"}
  • step2:创建一个python脚本fill50k.py根据json文件中的对应关系加载图片,python脚本如下所示,这个脚本中定义一个 Fill50k类,并继承datasets.GeneratorBasedBuilder,在类中重写_info(self): _split_generators(self, dl_manager)_split_generators(self, dl_manager)这三个方法
import pandas as pd
import datasets
import os
import logging

# 数据集路径设置
META_DATA_PATH = "D:\Desktop\workspace\code\loaddataset\\fill50k\\train.jsonl"
IMAGE_DIR = "D:\Desktop\workspace\code\loaddataset\\fill50k"
CONDITION_IMAGE_DIR = "D:\Desktop\workspace\code\loaddataset\\fill50k"


# 定义数据集中有哪些特征,及其类型
_FEATURES = datasets.Features(
    {
        "image": datasets.Image(),
        "conditioning_image": datasets.Image(),
        "text": datasets.Value("string"),
    },
)


# 定义数据集
class Fill50k(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(name="default", version=datasets.Version("0.0.2"))]
    DEFAULT_CONFIG_NAME = "default"

    def _info(self):
        return datasets.DatasetInfo(
            description="None",
            features=_FEATURES,
            supervised_keys=None,
            homepage="None",
            license="None",
            citation="None",
        )

    def _split_generators(self, dl_manager):

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "metadata_path": META_DATA_PATH,
                    "images_dir": IMAGE_DIR,
                    "conditioning_images_dir": CONDITION_IMAGE_DIR,
                },
            ),
        ]

    def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
        metadata = pd.read_json(metadata_path, lines=True)

        for _, row in metadata.iterrows():
            text = row["text"]

            image_path = row["image"]
            image_path = os.path.join(images_dir, image_path)

            # 打开文件错误时直接跳过
            try:
                image = open(image_path, "rb").read()
            except Exception as e:
                logging.error(e)
                continue

            conditioning_image_path = os.path.join(
                conditioning_images_dir, row["conditioning_image"]
            )

            # 打开文件错误直接跳过
            try:
                conditioning_image = open(conditioning_image_path, "rb").read()
            except Exception as e:
                logging.error(e)
                continue

            yield row["image"], {
                "text": text,
                "image": {
                    "path": image_path,
                    "bytes": image,
                },
                "conditioning_image": {
                    "path": conditioning_image_path,
                    "bytes": conditioning_image,
                },
            }
  • step3: 通过load_dataset加载数据集
dataset = load_dataset(path="D:\Desktop\workspace\code\loaddataset\\fill50k\\fill50k.py",
                       cache_dir="D:\Desktop\workspace\code\loaddataset\\fill50k\cache")
print(dataset)
print(dataset["train"][0])

输出结果如下

DatasetDict({
    train: Dataset({
        features: ['image', 'conditioning_image', 'text'],
        num_rows: 50000
    })
})
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=512x512 at 0x1AEA2FF9040>, 'conditioning_image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=512x512 at 0x1AEA2FE2640>, 'text': 'pale golden rod circle with old lace background'}

更多AI算法,请关注微信公众号 funNLPer

3. 参考

Loading a Dataset Hugging Face

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值