熊怪吃核桃
1.森林里有一只熊怪,很爱吃核桃。不过它有个习惯,每次都把找到的核桃分成相等的两份,吃掉一份,留一份。如果不能等分,熊怪就会扔掉一个核桃再分。第二天再继续这个过程,直到最后剩一个核桃了,直接丢掉。
有一天,熊怪发现了1543个核桃,请问,它在吃这些核桃的过程中,一共要丢掉多少个核桃。
请填写该数字(一个整数),不要填写任何多余的内容或说明文字。
思路:
1.57
模拟题,直接按照思路模拟即可。
public static void main(String[] args) {
int num=1543;
int count=0;
while(num!=1){
if(num%2==0){
num=num/2;
}
else{
num--;
num=num/2;
count++;
}
}
System.out.println(count+1);
}
2.星系炸弹
在X星系的广袤空间中漂浮着许多X星人造“炸弹”,用来作为宇宙中的路标。
每个炸弹都可以设定多少天之后爆炸。
比如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在2015年1月16日爆炸。
有一个贝塔炸弹,2014年11月9日放置,定时为1000天,请你计算它爆炸的准确日期。
请填写该日期,格式为 yyyy-mm-dd 即4位年份2位月份2位日期。比如:2015-02-19
请严格按照格式书写。不能出现其它文字或符号。
思路:
要么是使用date类,要么就是自己写函数
实际上要用到date和calendar
public static void main(String[] args) throws ParseException {
//设置日期格式
DateFormat formatter = new SimpleDateFormat("yyyy-MM-dd");
String curDatetime = "2014-11-09";
//转换为date对象
Date date = formatter.parse(curDatetime);
//转换为calendar对象
Calendar calendar = Calendar.getInstance();
//设置时间
calendar.setTime(date);
//添加日期
calendar.add(Calendar.DATE,1000);
//转换为字符串形式
String datetime = formatter.format(calendar.getTime());
System.out.println(datetime);
}
3.九数分三组
1~9的数字可以组成3个3位数,设为:A,B,C, 现在要求满足如下关系:
B = 2 * A
C = 3 * A
请你写出A的所有可能答案,数字间用空格分开,数字按升序排列。
注意:只提交A的值,严格按照格式要求输出。
思路:
要么是暴力求解 for循环, 要么是dfs
使用dfs
public class q201503 {
static int[] nums = new int[9];
static boolean[] vis = new boolean[9];
static int count = 0;
static ArrayList<Integer> out = new ArrayList<Integer>();
public static void dfs(int flag) {
if (flag == 9) {
int[] res = new int[3];
for (int i = 0; i < 3; i++) {
//将九个数字组成三个三位数
res[i] = 100 * nums[i * 3] + 10 * nums[i * 3 + 1] + nums[i * 3 + 2];
}
int sum = 0;
if (res[1] == 2 * res[0] && res[2] == 3 * res[0]) {
//满足条件
//把A添加到输出数组中
out.add(res[0]);
}
count++;
return;
}
for (int i = 0; i < 9; i++) {
if (vis[i] == false) {
nums[flag] = i + 1;
vis[i] = true;
dfs(flag + 1);
vis[i] = false;
}
}
}
public static void main(String[] args) {
dfs(0);
//排序
Collections.sort(out);
for (int num:
out) {
System.out.print(num+" ");
}
}
4.
循环节长度
两个整数做除法,有时会产生循环小数,其循环部分称为:循环节。
比如,11/13=6=>0.846153846153..... 其循环节为[846153] 共有6位。
下面的方法,可以求出循环节的长度。
请仔细阅读代码,并填写划线部分缺少的代码。
public static int f(int n, int m)
{
n = n % m;
Vector v = new Vector();
for(;;)
{
v.add(n);
n *= 10;
n = n % m;
if(n==0) return 0;
if(v.indexOf(n)>=0) _________________________________ ; //填空
}
}
注意,只能填写缺少的部分,不要重复抄写已有代码。不要填写任何多余的文字。
思路:
暂时不会
其实理解了就很简单了。循环进行计算并吧计算结果加入vector中,当一个计算结果与vector储存的结果一致的时候,说明已经进入循环,返回此时的大小即为循环节长度。
v.size()
5.打印菱形
给出菱形的边长,在控制台上打印出一个菱形来。
为了便于比对空格,我们把空格用句点代替。
当边长为8时,菱形为:
.......*
......*.*
.....*...*
....*.....*
...*.......*
..*.........*
.*...........*
*.............*
.*...........*
..*.........*
...*.......*
....*.....*
.....*...*
......*.*
.......*
下面的程序实现了这个功能,但想法有点奇怪。
请仔细分析代码,并填写划线部分缺失的代码。
public class A
{
public static void f(int n)
{
String s = "*";
for(int i=0; i<2*n-3; i++) s += ".";
s += "*";
String s1 = s + "\n";
String s2 = "";
for(int i=0; i<n-1; i++){
//System.out.println("=>"+s);
s = "." + _____________________________________ + "*"; //填空
s1 = s + "\n" + s1;
s2 += s + "\n";
}
System.out.println(s1+s2);
}
public static void main(String[] args)
{
f(8);
}
}
注意,只能填写缺少的部分,不要重复抄写已有代码。不要填写任何多余的文字。
思路:
暂时只能试
s.substring(0, 2 * n - 4 - i)
试了这么久才试出来。一开始要先调试看看有什么规律,善于使用调试
6.加法变乘法
我们都知道:1+2+3+ ... + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+...+10*11+12+...+27*28+29+...+49 = 2015
就是符合要求的答案。
请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
注意:需要你提交的是一个整数,不要填写任何多余的内容。
思路:
目测是用dfs搜索了,填空题 暴力循环也可以
忽略了一个是不相邻的加号
public class q201506 {
static int[] num = new int[50];
static int[] oper = new int[50];
static int count = 0;
public static void dfs(int flag) {
if (flag == 49 || count == 2) {
int sum = 0;
//确定两个乘号的位置
int[] op=new int[2];
int index=0;
for (int i = 1; i < 50; i++) {
if (oper[i] == 1) {
op[index] = i;
index++;
}
}
//乘法先计算
sum+=op[0]*(op[0]+1)+op[1]*(op[1]+1);
for (int i = 1; i <50 ; i++) {
//不是乘号的位置则相加
if(i!=op[0]&&i!=op[1]&&i!=op[0]+1&&i!=op[1]+1){
sum+=i;
}
}
//System.out.println(sum);
if (sum == 2015) {
//打印第一个乘号的位置
System.out.println(op[0]);
}
return;
}
for (int i = 1; i < 50; i++) {
if (oper[i] == 0 && oper[i - 1] != 1) {
//确保不是相邻两个加号
oper[i] = 1;
count++;
dfs(i + 1);
count--;
oper[i] = 0;
}
}
}
public static void main(String[] args) {
dfs(1);
}
}
写了很久终于写出来了,主要是两个难点 如何将不相邻的加号换成乘以及如何将结果进行结算
其实for循环也不是不可以。但是使用dfs可读性好一点。性能会不会好一些。
7.牌型种数
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字。
思路:
dfs
不考虑花色 会有四张同样的数字
不考虑顺序,那就是只要按小到大
20分钟没做对
去年的代码:
思路是用数组存储13种牌剩余的数量,即remain[i]表示点数为i的牌剩余的数量,
static int[] pos=new int[13];
static int[] remain=new int[13];
static int cnt=0;
static void dfs(int cur){
if(cur==13){
cnt++;
return;
}
for(int i=0;i<13;i++){
if(remain[i]>-4){
remain[i]--;
pos[cur]=i;
if(cur!=0){
if(pos[cur]>=pos[cur-1]){//不考虑顺序,所以只需把升序的结果计算出来即可
dfs(cur+1);
}
}
else {
dfs(cur+1);
}
remain[i]++;
pos[cur]--;}
}
}
public static void main(String[] args){
dfs(0);
System.out.println(cnt);//变成全排列了,
}
参考网络上的写法,没有使用数组储存,顺序搜索13种牌,每种牌有0-4张,凑够13张就算是一种结果输出。
//当前排列的总张数
static int sum = 0;
//答案数
static int ans = 0;
public static void cal(int cur) {
//cur表示当前搜索到第cur种牌
if(cur==13){
//全部牌都搜索完,且总张数为13,则结果加一
if(sum==13){
ans++;
return;
}
}
else{
for (int i = 0; i <5 ; i++) {
//0-4,表示当前种类的牌数可以为0张到4张
sum+=i;
cal(cur+1);
sum-=i;
}
}
}
public static void main(String[] args) {
cal(0);
System.out.println(ans);
}
8.移动距离
X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3...
当排满一行时,从下一行相邻的楼往反方向排号。(蛇形走位)
比如:当小区排号宽度为6时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 .....
我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)
输入为3个整数w m n,空格分开,都在1到10000范围内
w为排号宽度,m,n为待计算的楼号。
要求输出一个整数,表示m n 两楼间最短移动距离。
例如:
用户输入:
6 8 2
则,程序应该输出:
4
再例如:
用户输入:
4 7 20
则,程序应该输出:
5
思路:
先把蛇形走位的矩阵坐标转换成正常的坐标,然后使用dp进行计算即可。其实还用不上dp,只能走直线的话,直接x+y相加即可。
public static void main(String[] args) {
Scanner s=new Scanner(System.in);
int w=s.nextInt();
int m=s.nextInt();
int n=s.nextInt();
int x_m;
int x_n;
int y_n=n%w==0?n/w-1:n/w;//能整除的要减一
int y_m=m%w==0?m/w-1:m/w;
if((y_m)%2==0){
//偶数行
x_m=m%w-1;
}
else{
x_m=w-m%w;
}
if((y_n)%2==0){
//偶数行
x_n=n%w-1;
}
else{
x_n=w-n%w;
}
System.out.println(Math.abs(x_m-x_n)+Math.abs(y_m-y_n));
}
9.垒骰子
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
思路:
暂时不会
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int m = input.nextInt();
int[][] A = new int[6][6];
//初始化矩阵
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < A[0].length; j++) {
A[i][j] = 1;
}
}
int a, b;
for (int i = 0; i < m; i++) {
a = input.nextInt();
b = input.nextInt();
A[a - 1][b - 1] = 0;
A[b - 1][a - 1] = 0;
}
int[] original = new int[6];
Arrays.fill(original, 1);//直接填充
int[][] temp = quickMatrix(A, n - 1);
int[] res = matrix(temp, original);
int sum = 0;
for (int i = 0; i < 6; i++) {
sum += res[i];
}
double t = Math.pow(4, n) * sum % 1000000007;
System.out.println((int) t);
}
public static int[][] quickMatrix(int[][] A, int n) {
if (n == 1) {
return A;
}
if (n % 2 == 1) {
return matrix(quickMatrix(A, n - 1), A);
} else {
int[][] temp = quickMatrix(A, n / 2);
return matrix(temp, temp);
}
}
public static int[][] matrix(int[][] A, int[][] B) {
//dp
int[][] res = new int[A.length][A[0].length];
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < B[0].length; j++) {
for (int k = 0; k < B.length; k++) {
res[i][j] = res[i][j] + A[i][k] * B[k][j];
}
}
}
return res;
}
public static int[] matrix(int[][] A, int[] B) {
int[] res = new int[B.length];
for (int i = 0; i < A.length; i++) {
for (int k = 0; k < B.length; k++) {
res[i] = res[i] + A[i][k] * B[k];
}
}
return res;
}
提到了一个知识点矩阵快速幂
10.灾后重建
Pear市一共有N(<=50000)个居民点,居民点之间有M(<=200000)条双向道路相连。这些居民点两两之间都可以通过双向道路到达。这种情况一直持续到最近,一次严重的地震毁坏了全部M条道路。
震后,Pear打算修复其中一些道路,修理第i条道路需要Pi的时间。不过,Pear并不打算让全部的点连通,而是选择一些标号特殊的点让他们连通。
Pear有Q(<=50000)次询问,每次询问,他会选择所有编号在[l,r]之间,并且 编号 mod K = C 的点,修理一些路使得它们连通。由于所有道路的修理可以同时开工,所以完成修理的时间取决于花费时间最长的一条路,即涉及到的道路中Pi的最大值。
你能帮助Pear计算出每次询问时需要花费的最少时间么?这里询问是独立的,也就是上一个询问里的修理计划并没有付诸行动。
【输入格式】
第一行三个正整数N、M、Q,含义如题面所述。
接下来M行,每行三个正整数Xi、Yi、Pi,表示一条连接Xi和Yi的双向道路,修复需要Pi的时间。可能有自环,可能有重边。1<=Pi<=1000000。
接下来Q行,每行四个正整数Li、Ri、Ki、Ci,表示这次询问的点是[Li,Ri]区间中所有编号Mod Ki=Ci的点。保证参与询问的点至少有两个。
【输出格式】
输出Q行,每行一个正整数表示对应询问的答案。
【样例输入】
7 10 4
1 3 10
2 6 9
4 1 5
3 7 4
3 6 9
1 5 8
2 7 4
3 2 10
1 7 6
7 6 9
1 7 1 0
1 7 3 1
2 5 1 0
3 7 2 1
【样例输出】
9
6
8
8
【数据范围】
对于20%的数据,N,M,Q<=30
对于40%的数据,N,M,Q<=2000
对于100%的数据,N<=50000,M<=2*10^5,Q<=50000. Pi<=10^6. Li,Ri,Ki均在[1,N]范围内,Ci在[0,对应询问的Ki)范围内。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 5000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
思路:
太复杂了,估计比赛时候也写不出来,先不研究了。
//使用Prim算法,获取输入图的最小生成树
public int[][] getPrim(int[][] value) {
int[][] result = new int[value.length][value[0].length]; //存放最终最小生成树的边权值
int[] used = new int[value.length]; //用于判断顶点是否被遍历
for (int i = 1, len = value.length; i < len; i++) {
used[i] = -1; //初始化,所有顶点均未被遍历
}
used[1] = 1; //从顶点1开始遍历,表示顶点已经被遍历
int count = 1; //记录已经完成构造最小生成树的顶点
int len = value.length;
while (count < len) { //当已经遍历的顶点个数达到图的顶点个数len时,退出循环
int tempMax = Integer.MAX_VALUE;
int tempi = 0;
int tempj = 0;
for (int i = 1; i < len; i++) { //用于遍历已经构造的顶点
if (used[i] == -1) {
continue;
}
for (int j = 1; j < len; j++) { //用于遍历未构造的顶点
if (used[j] == -1) {
if (value[i][j] != 0 && tempMax > value[i][j]) {
tempMax = value[i][j];
tempi = i;
tempj = j;
}
}
}
}
result[tempi][tempj] = tempMax;
result[tempj][tempi] = tempMax;
used[tempj] = 1;
count++;
}
return result;
}
//使用floyd算法获取所有顶点之间的最短路径的具体路径
public void floyd(int[][] primTree, int[][] path) {
int[][] tree = new int[primTree.length][primTree.length];
for (int i = 1; i < primTree.length; i++) {
System.arraycopy(primTree[i], 1, tree[i], 1, primTree.length - 1);
}
for (int k = 1; k < primTree.length; k++) {
for (int i = 1; i < primTree.length; i++) {
for (int j = 1; j < primTree[0].length; j++) {
if (tree[i][k] != 0 && tree[k][j] != 0) {
int temp = tree[i][k] + tree[k][j];
if (tree[i][j] == 0) {
tree[i][j] = temp;
path[i][j] = k; //存放顶点i到顶点j之间的路径节点
}
}
}
}
}
}
//返回a与b之间的最大值
public int max(int a, int b) {
return a > b ? a : b;
}
//根据最短路径,返回顶点start~end之间的最大权值边
public int dfsMax(int[][] primTree, int[][] path, int start, int end) {
if (path[start][end] == 0) {
return primTree[start][end];
}
int mid = path[start][end]; //start和end的中间顶点
return max(dfsMax(primTree, path, start, mid), dfsMax(primTree, path, mid, end));
}
//根据最小生成树,返回各个顶点到其它顶点行走过程中,权值最大的一条边
public int[][] getMaxValue(int[][] primTree) {
int[][] path = new int[primTree.length][primTree[0].length];
floyd(primTree, path); //获取具体最短路径
int[][] result = new int[primTree.length][primTree[0].length];
for (int i = 1; i < primTree.length; i++) {
for (int j = 1; j < primTree.length; j++) {
if (j == i) {
continue;
}
int max = dfsMax(primTree, path, i, j);
result[i][j] = max;
}
}
return result;
}
//打印出题意结果
public void printResult(int[][] value, int[][] result) {
int[][] primTree = getPrim(value); //获取输入图的最小生成树
int[][] maxResult = getMaxValue(primTree); //获取各个顶点到其它顶点最短路径中最大权值边
for (int i = 0; i < result.length; i++) {
int L = result[i][0];
int R = result[i][1];
int K = result[i][2];
int C = result[i][3];
ArrayList<Integer> list = new ArrayList<Integer>();
for (int j = L; j <= R; j++) {
if (j % K == C) {
list.add(j);
}
}
int max = 0;
for (int j = 0; j < list.size(); j++) {
for (int k = j + 1; k < list.size(); k++) {
if (max < maxResult[list.get(j)][list.get(k)]) {
max = maxResult[list.get(j)][list.get(k)];
}
}
}
System.out.println(max);
}
return;
}
public static void main(String[] args) {
q201510 test = new q201510();
Scanner in = new Scanner(System.in);
int N = in.nextInt();
int M = in.nextInt();
int Q = in.nextInt();
int[][] value = new int[N + 1][N + 1];
for (int i = 1; i <= M; i++) {
int a = in.nextInt();
int b = in.nextInt();
int tempV = in.nextInt();
value[a][b] = tempV;
value[b][a] = tempV;
}
int[][] result = new int[Q][4];
for (int i = 0; i < Q; i++) {
result[i][0] = in.nextInt();
result[i][1] = in.nextInt();
result[i][2] = in.nextInt();
result[i][3] = in.nextInt();
}
test.printResult(value, result);
}
参考