点击上方蓝色字体“高中数学王晖”关注王晖老师,免费获取各种知识干货和学习经验~~~您的点赞转发是对老师的最大鼓舞~~~
距高考还有75天
“胡不归问题”的由来
从前 有一个小伙子在外地当学徒 当他获悉在家乡的父亲年老病危的消息后 便立即启程赶路 由于思念心切 他选择了全是沙砾地带的直线路径A→B 当他气喘吁吁地跑到父亲眼前时 老人刚刚咽了气…… 小伙子不觉失声痛哭 邻舍劝慰小伙子时告诉他 老人在弥留之际 还不断喃喃地叨念“胡不归?胡不归?……” 这个古老的传说 引起了人们的思索 小伙子要提前到家是否有可能呢? 倘有可能 他应该选择一条怎样的路线呢? 这就是风靡千年的 “胡不归问题”“胡不归问题”示意图
早期的科学家 曾为这则古老传说中的小伙子 设想了一条路线 A是出发地,B是目的地 AC是一条驿道 而驿道靠目的地的一侧全是沙砾地 为了急切回家 小伙子选择了直线路程A→B 但是 他忽略了在驿道上行走 要比在砂土地带行走快的这一因素 如果他能选择一条合适的路线 尽管这条路线长一些 但是速度却可以加快 是完全可以提前抵达家门的 当然 他们同时也表示 小伙子慌急之中乱了方寸 那种急切的心情是完全可以理解的早期数学家的设想
其实 这个问题 用现代科学语言来描述 可以是这个样子的问题抽象
已知在驿道和沙砾上行走的速度分别为V1和V2
(V1>V2),在AC上找出一定点D,
使得A→D→B行走时间最短,
于是问题在于如何寻找点D.
其实,在高中
问题已经远远比这个要难了
但也因为这个问题
现在已经形成了固定的
也确实有意思的题型
例1.在平面直角坐标系中,已知点A(1,4), B(4,2)。若点P为 x 轴上一动点, 求 |PA| +|PB| 的最小值。
分析:这是一个定元素在直线同侧问题。
做点A关于关于x轴的对称点A',
则连接A'B交x轴于点P1,
由对称性可知,
P点在x轴上任一位置时,都有|PA|=|PA'|,
则|PA|+|PB|=|PA'|+|PB|,
而在三角形PA‘B中,总有|PA'|+|PB|>|A'B|,
故当点P与点P1重合时,
|A'B|即为|PA'|+|PB|的最小值。
或者也可以这样理解: 由对称性知, 从A点经过x轴再到点B所走的路程, 相当于从A'点经过x轴再到点B, 因为A'和B点分别在x轴两侧, 走直线必为最短路线。 变式1.在平面直角坐标系中,已知点A(1,4), B(4,2)。若点P为直线 l:x+y+1=0上 一动点, 求 |PA| +|PB| 的最小值。 评析: 此题在例1的基础上, 仅对条件中动点P的位置做了调整, 题型未变,思路也不变(同侧变异侧) 但因增加了一般对称点的求法, 也加大了此题求解的难度。 变式2.在平面直角坐标系中,已知点A(1,4), B(4,2)。在x轴和y轴上分别求一点P 和Q,使得|BP|+|PQ|+|QA|取得最小值, 并求出最小值。 评析:此题中两定元素也在动点所在直线的同一侧。 此题在例1基础上,将一个动点变为两个动点, 但题型仍未改变,所以方法上仍然大同小异。 由对称性知: |AN|+|NM|+|MB|=|A'N|+|NM|+|MB'|, 由两点之间线段最短知, 最小值为|A'B| 结合物理学中光反射的特点, 此能也可将其情境更改为: 若一束光线从B点射出, 先后经x轴和y轴反射后, 恰好经过点A, 求光线从B点射到A点所经过的距离。看来,
光线所走的路径应该都是最短路径了。
变式3.在平面直角坐标系中,已知点A(1,4)和 点B(4,-2)。若点P为 x 轴上一动点, 求|PA|-|PB|的最大值。 分析:此题中两定元素分别在动点所在直线异侧, |PA|+|PB|的最小值易得, 但差值|PA|-|PB|则需要重新改造。 可考虑利用对称性, 将异侧两点改变为同侧。思路:做点B关于x轴的对称点B‘,则总有|PB|=|PB'|
作射线AB'与x轴的交点P1。
当则P与点P1不重合时,
在三角形PAB‘中,
总有|PA|-|PB|=|PA|-|PB’|
当点P与P1重合时,
|PA|-|PB|=|PA|-|PB’|=|AB'|
故|PA|-|PB|最小值即为|AB'|
分析:此题在例1的基础上, 将动点所在的直线变为曲线, 但两个定点与动点所在的曲线位置关系不变(同一侧)。 所以,从本质上说,题型是相同的, 只是直线具有对称性的特殊性质, 而一般曲线是不具备的。 因此,本题想从位置关系的改变上(同侧变异侧)着手, 有难度。 故可参考变式3,考虑改变运算, 将距离之和改变为距离之差。 根据动点P为椭圆上的点, 可考虑用椭圆的性质。 思路:由椭圆定义,可知|PF1|+|PF2|=6, 故|PA|+|PF1| = |PA| - |PF2|+6 因此只要求出 |PA| - |PF2|的最小值即可。 而定点在线的同侧时(定点在椭圆内部), 差的最值可通过三角形性质直接得出。 由图可知: 依据三角形两边之差小于第三边, 点P与点M和点N分别重合时, |PA| - |PF2|分别取得最大值(|AM|) 和最小值(-|AM|)。分析:此题仅在例2的基础上,
将其中一个线段的系数改为非1常数。
若其中一个系数不为1时,
按照“胡不归问题”的处理,
可以先考虑这个系数的几何意义,
或为它构造几何意义。
因涉及焦半径,可考虑第二定义,
看是否与离心率有关。
如果两个系数都不为1时,
你能处理吗?
其实,关于这一类最值问题的处理,
主要有两种思路。
一是改变位置,
即同侧不能处理,则改为异侧;
二是改变运算,
加法不能处理时,则改为减法。
具体问题中,需要考虑的,
只是依据怎样的工具进行转化的问题。
在直线、椭圆、双曲线及抛物线中
均有类似题型
往期优质数学干货链接:
【异彩纷呈】组合数的这些性质你确实应该知道!!!
【繁枝细节】高考数学审题的八大环节------教你精准、省时、高效答题!!!
【鸟语花香】数列最值问题的四类常见题型------如此优秀的干货简直让人看不够!!!
【神采奕奕】概率专题各知识点究竟有何内在联系???------这篇推文绝对可以帮你捋顺了!!!
【点睛之笔】2020高考数学命题导向和备考建议------专家告诉你冲刺阶段如何找准自己的定位!!!(文末付下载方式)