点击上方蓝色字体“高中数学王晖”关注王晖老师,免费获取各种知识干货和学习经验~~~您的点赞转发是对老师的最大鼓舞~~~
距高考还有75天
“胡不归问题”的由来
从前 有一个小伙子在外地当学徒 当他获悉在家乡的父亲年老病危的消息后 便立即启程赶路 由于思念心切 他选择了全是沙砾地带的直线路径A→B 当他气喘吁吁地跑到父亲眼前时 老人刚刚咽了气…… 小伙子不觉失声痛哭 邻舍劝慰小伙子时告诉他 老人在弥留之际 还不断喃喃地叨念“胡不归?胡不归?……” 这个古老的传说 引起了人们的思索 小伙子要提前到家是否有可能呢? 倘有可能 他应该选择一条怎样的路线呢? 这就是风靡千年的 “胡不归问题”
“胡不归问题”示意图
早期的科学家 曾为这则古老传说中的小伙子 设想了一条路线 A是出发地,B是目的地 AC是一条驿道 而驿道靠目的地的一侧全是沙砾地 为了急切回家 小伙子选择了直线路程A→B 但是 他忽略了在驿道上行走 要比在砂土地带行走快的这一因素 如果他能选择一条合适的路线 尽管这条路线长一些 但是速度却可以加快 是完全可以提前抵达家门的 当然 他们同时也表示 小伙子慌急之中乱了方寸 那种急切的心情是完全可以理解的
早期数学家的设想
其实 这个问题 用现代科学语言来描述 可以是这个样子的
问题抽象
已知在驿道和沙砾上行走的速度分别为V1和V2
(V1>V2),在AC上找出一定点D,
使得A→D→B行走时间最短,
于是问题在于如何寻找点D.

其实,在高中
问题已经远远比这个要难了
但也因为这个问题
现在已经形成了固定的
也确实有意思的题型

分析:这是一个定元素在直线同侧问题。
做点A关于关于x轴的对称点A',
则连接A'B交x轴于点P1,
由对称性可知,
P点在x轴上任一位置时,都有|PA|=|PA'|,
则|PA|+|PB|=|PA'|+|PB|,
而在三角形PA‘B中,总有|PA'|+|PB|>|A'B|,
故当点P与点P1重合时,
|A'B|即为|PA'|+|PB|的最小值。
看来,
光线所走的路径应该都是最短路径了。
思路:做点B关于x轴的对称点B‘,则总有|PB|=|PB'|
作射线AB'与x轴的交点P1。
当则P与点P1不重合时,
在三角形PAB‘中,
总有|PA|-|PB|=|PA|-|PB’|
当点P与P1重合时,
|PA|-|PB|=|PA|-|PB’|=|AB'|
故|PA|-|PB|最小值即为|AB'|
分析:此题仅在例2的基础上,
将其中一个线段的系数改为非1常数。
若其中一个系数不为1时,
按照“胡不归问题”的处理,
可以先考虑这个系数的几何意义,
或为它构造几何意义。
因涉及焦半径,可考虑第二定义,
看是否与离心率有关。
如果两个系数都不为1时,
你能处理吗?
其实,关于这一类最值问题的处理,
主要有两种思路。
一是改变位置,
即同侧不能处理,则改为异侧;
二是改变运算,
加法不能处理时,则改为减法。
具体问题中,需要考虑的,
只是依据怎样的工具进行转化的问题。
在直线、椭圆、双曲线及抛物线中
均有类似题型
往期优质数学干货链接:
【异彩纷呈】组合数的这些性质你确实应该知道!!!
【繁枝细节】高考数学审题的八大环节------教你精准、省时、高效答题!!!
【鸟语花香】数列最值问题的四类常见题型------如此优秀的干货简直让人看不够!!!
【神采奕奕】概率专题各知识点究竟有何内在联系???------这篇推文绝对可以帮你捋顺了!!!
【点睛之笔】2020高考数学命题导向和备考建议------专家告诉你冲刺阶段如何找准自己的定位!!!(文末付下载方式)