期中通宵两宿续命模式开启

期中通宵两宿续命模式开启

决策树

线性回归

最小二乘法直接解出系数
没有常数项

w ^ = x T y ∣ ∣ x ∣ ∣ 2 2 \hat w = \frac{x^Ty}{||x||_2^2} w^=x22xTy

有常数项

一元
w ^ = ( x − x ˉ ⋅ 1 ) T ( y − y ˉ ⋅ 1 ) ∣ ∣ x − x ˉ ⋅ 1 ∣ ∣ 2 2 \hat w = \frac{(x-\bar x·1)^T(y-\bar y·1)}{||x-\bar x·1||_2^2} w^=xxˉ122(xxˉ1)T(yyˉ1)
b ^ = y ˉ − w ^ x ˉ \hat b = \bar y - \hat w \bar x b^=yˉw^xˉ
多元
w ^ = ( X T X ) − 1 X T y \hat w = (X^TX)^{-1}X^Ty w^=(XTX)1XTy

还有正则化的方法==(记得补充呀)==

逻辑回归——分类任务

机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)
将线性回归预测值与分类任务的真实标记联系起来——所以需要一个单调可微的函数(可微是便于求导找到最优解)所以找到了对数几率函数——Sigmoid函数
y = f ( x ) = 1 1 + e − ( w T x + b ) y=f(x) = \frac{1}{1+e^{-(w^Tx+b)}} y=f(x)=1+e(wTx+b)1
这里的y表示的是将样本分类到正例的概率,用极大似然法进行估计(将w加一维多加个常数项,x取1)
用梯度下降得到递归公式(初始值设置为全是1的向量)
θ t + 1 = θ t − α ∂ L ( θ ) ∂ θ = θ t − α ∑ i = 1 n ( y i − σ ( θ T x i ) ) x i \theta^{t+1}=\theta^t-\alpha\frac{\partial L(\theta)}{\partial\theta}=\theta^t-\alpha\sum_{i=1}^n(y_i-\sigma(\theta^Tx_i))x_i θt+1=θtαθL(θ)=θtαi=1n(yiσ(θTxi))xi
需要自己设置步长和最大迭代次数
也可以用牛顿迭代法
β t + 1 = β t − ( ∂ 2 l ( β ) ∂ β ∂ β T ) − 1 ∂ l ( β ) ∂ β \beta^{t+1}=\beta^t-(\frac{\partial^2l(\beta)}{\partial\beta\partial\beta^T})^{-1}\frac{\partial l(\beta)}{\partial \beta} βt+1=βt(ββT2l(β))1βl(β)
∂ l ( β ) ∂ β = − ∑ i = 1 m x i ^ ( y i − p 1 ( x i ^ ; β ) ) \frac{\partial l(\beta)}{\partial \beta}=-\sum_{i=1}^m\hat{x_i}(y_i-p_1(\hat{x_i};\beta)) βl(β)=i=1mxi^(yip1(xi^;β))
∂ 2 l ( β ) ∂ β ∂ β T = ∑ i = 1 m x i ^ x i ^ T p 1 ( x i ^ ; β ) ( 1 − p 1 ( x i ^ ; β ) ) \frac{\partial^2l(\beta)}{\partial\beta\partial\beta^T}=\sum_{i=1}^m\hat{x_i}\hat{x_i}^Tp_1(\hat{x_i};\beta)(1-p_1(\hat{x_i};\beta)) ββT2l(β)=i=1mxi^xi^Tp1(xi^;β)(1p1(xi^;β))
这里二阶导是步长,一阶导是方向

线性判别 LDA

思想:找到一条线,样本点在上面投影,同类靠近,异类远离
目标函数:
J = ∣ ∣ w T μ 0 − w T μ 1 ∣ ∣ 2 2 w T Σ 0 w + w T Σ 1 w = w T ( μ 0 − μ 1 ) ( μ 0 − μ 1 ) T w w T ( Σ 0 + Σ 1 ) w J=\frac{||w^T\mu_0-w^T\mu_1||_2^2}{w^T\Sigma_0w+w^T\Sigma_1w}=\frac{w^T(\mu_0-\mu_1)(\mu_0-\mu_1)^Tw}{w^T(\Sigma_0+\Sigma_1)w} J=wTΣ0w+wTΣ1wwTμ0wTμ122=wT(Σ0+Σ1)wwT(μ0μ1)(μ0μ1)Tw
求得
w = S w − 1 ( μ 0 − μ 1 ) w = S_w^{-1}(\mu_0-\mu_1) w=Sw1(μ0μ1)
其中 μ 0 \mu_0 μ0 μ 1 \mu_1 μ1是各类的向量均值, S w S_w Sw是类内散度矩阵
S w = Σ 0 + Σ 1 = ∑ x ∈ X 0 ( x − μ 0 ) ( x − μ 0 ) T + ∑ x ∈ X 1 ( x − μ 1 ) ( x − μ 1 ) T S_w =\Sigma_0+\Sigma_1=\sum_{x\in X_0}(x-\mu_0)(x-\mu_0)^T+\sum_{x\in X_1}(x-\mu_1)(x-\mu_1)^T Sw=Σ0+Σ1=xX0(xμ0)(xμ0)T+xX1(xμ1)(xμ1)T

ROC曲线

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值