题目难度:三颗半星
题目大意:给出一个图,包括边权,和每个节点拥有的自行车的数量,要求找出到目标点的最短路径,在路径上的过程中,需要对每个节点上的自行车进行平衡 都达到一个半满的完美状态。也就是行进过程中,如果不是半满,就需要一开始带足够的车,如果最后有多余的车,需要带回。
题目坑点:题目就是Dijkstra+DFS的应用,需要求出最短路径,记录下路径之后,进行筛选,对于每条路径,计算出需要带走和带回的车辆,最后排序即可。
代码如下:
#include<iostream>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<algorithm>
#include<map>
#include<cstring>
#define MAX 1500
#define INF 0x3fffffff
using namespace std;
typedef struct{
vector<int> path;
int send,take;
}Method;
int cmax,N,sp,M;
int col[MAX],G[MAX][MAX],vis[MAX],d[MAX];
vector<Method> allMethod;
vector<int> pre[MAX];
vector<int> temp;
bool cmp(Method a,Method b){
if(a.send!=b.send)
return a.send<b.send;
else
return a.take<b.take;
}
void DFS(int n){
if(n==0){
temp.push_back(n);
int send=0,take=0;
for(int i=temp.size()-2;i>=0;i--){
if(col[temp[i]]<cmax/2){
if(take>0){
if(take>=(cmax/2-col[temp[i]]))
take-=(cmax/2-col[temp[i]]);
else{
send+=((cmax/2-col[temp[i]])-take);
take=0;
}
}
else
send+=(cmax/2-col[temp[i]]);
}
else
take+=(col[temp[i]]-cmax/2);
}
Method m;
m.path=temp;
m.send=send;
m.take=take;
allMethod.push_back(m);
temp.pop_back();
}
temp.push_back(n);
for(int i=0;i<pre[n].size();i++)
DFS(pre[n][i]);
temp.pop_back();
}
int main(){
fill(G[0],G[0]+MAX*MAX,INF);
fill(vis,vis+MAX,0);
fill(d,d+MAX,INF);
cin>>cmax>>N>>sp>>M;
for(int i=1;i<=N;i++)
cin>>col[i];
for(int i=0;i<M;i++){
int s,e,w;
cin>>s>>e>>w;
G[s][e]=w;
G[e][s]=w;
}
//dijkstra
d[0]=0;//因为默认从0开始
for(int i=0;i<=N;i++){
int u=-1,minpath=INF;
for(int j=0;j<=N;j++){
if(vis[j]==0&&d[j]<minpath){
u=j;
minpath=d[j];
}
}
if(u==-1)
break;
vis[u]=1;
for(int j=0;j<=N;j++){
if(vis[j]==0&&G[u][j]!=INF){
if(d[j]>d[u]+G[u][j]){
d[j]=d[u]+G[u][j];
pre[j].clear();
pre[j].push_back(u);
}
else if(d[j]==d[u]+G[u][j]){
pre[j].push_back(u);
}
}
}
}
DFS(sp);
sort(allMethod.begin(),allMethod.end(),cmp);
Method m=allMethod[0];
cout<<m.send<<" ";
for(int i=m.path.size()-1;i>=0;i--){
cout<<m.path[i];
if(i!=0)
cout<<"->";
}
cout<<" "<<m.take<<endl;;
}