Leetcode-Python3 [1.两数之和]
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
常规:暴力查找
常见解法:使用字典存储已出现值的下标,O(n)匹配
1 classSolution:2 def twoSum(self, nums: List[int], target:int) ->List[int]:3 dict ={}4 ll =len(nums)5 for i inrange(ll):6 if(target - nums[i] indict):7 return [dict[target -nums[i]], i]8 else:9 dict[nums[i]] =i;10
11 if __name__ == '__main__':12 n = [2, 7, 11, 15]13 tar = 9
14 s =Solution()15 a =s.twoSum(n,tar)16 print(a)
View Code
Leetcode-Python3 [2.两数相加]
给出两个 非空 的链表用来表示两个非负的整数。其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字。
如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和。
您可以假设除了数字 0 之外,这两个数都不会以 0 开头。
示例:
输入:(2 -> 4 -> 3) + (5 -> 6 -> 4)
输出:7 -> 0 -> 8
原因:342 + 465 = 807
解法:同时遍历,记录进位
1 #Definition for singly-linked list.
2 classListNode:3 def __init__(self, x):4 self.val =x5 self.next =None6
7 classSolution:8 def addTwoNumbers(self, l1: ListNode, l2: ListNode) ->ListNode:9 dd =ListNode(0)10 cur =dd11 carry =012 while l1 orl2:13 num1 = l1.val if l1 else014 num2 = l2.val if l2 else015 sum = num1+num2+carry16
17 carry = sum//10
18 cur.next = ListNode(sum%10)19 cur =cur.next20 l1 = l1.next if l1 elseNone21 l2 = l2.next if l2 elseNone22 ifcarry:23 cur.next =ListNode(carry)24 return dd.next
View Code
Leetcode-Python3 [3.无重复字符的最长子串]
给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。
示例 1:
输入: "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:
输入: "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:
输入: "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
解法:滑动窗口 [i, j],滑动 j 直到遇到 str[j] == str[i] ,更新最大值,并且把 i 跳转到最新出现的 str[j]字符的位置。 滑动 j 的同时更新每种字符的最新下标。
1 classSolution:2 def lengthOfLongestSubstring(self, s: str) ->int:3 st =04 udChar ={}5 max_ans =06 ll =len(s)7 for i inrange(ll):8 if(s[i] in udChar and udChar[s[i]] >=st):9 st = udChar[s[i]]+1
10 else:11 max_ans = max(max_ans, i-st+1)12 udChar[s[i]] =i13
14 returnmax_ans15
View Code
Leetcode-Python3 [4.寻找两个有序数组的中位数]
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
解法:给出的数组是有序的,要求的时间复杂度是 O(log) 往二分方向思考。
解法一:合并两个数组,排序后二分(归并排序),用python的sorted可以过...
解法二:两边同时二分,动态查找中位数。因为区间长度会动态改变,所以就转换成了二分查找第K大的数,注意边界的处理。
1 classSolution:2 def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) ->float:3 ll = len(nums1)+len(nums2)4 if(ll%2 == 1):5 return self.findk(nums1, nums2, ll//2)6 else:7 return (self.findk(nums1, nums2, ll//2)+self.findk(nums1, nums2, ll//2-1))/2
8
9 deffindk(self, nums1, nums2, k):10 if notnums1:11 returnnums2[k]12 if notnums2:13 returnnums1[k]14 i1, i2 = len(nums1)//2, len(nums2)//2
15
16 m1, m2 =nums1[i1], nums2[i2]17 #print(i1, i2, k, m1, m2)
18
19 if i1+i2 <20 if m1>m2:21 return self.findk(nums1, nums2[i2+1:], k-i2-1)22 else:23 return self.findk(nums1[i1+1:], nums2,k-i1-1)24 else:25 if m1 >m2:26 returnself.findk(nums1[:i1], nums2, k)27 else:28 returnself.findk(nums1, nums2[:i2], k)2920>
View Code