非零因子
码龄5年
关注
提问 私信
  • 博客:73,957
    动态:2,531
    76,488
    总访问量
  • 35
    原创
  • 758,919
    排名
  • 28
    粉丝
  • 0
    铁粉

个人简介:终身学习

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2020-03-06
博客简介:

weixin_46489969的博客

查看详细资料
个人成就
  • 获得57次点赞
  • 内容获得4次评论
  • 获得224次收藏
  • 代码片获得247次分享
创作历程
  • 3篇
    2023年
  • 32篇
    2022年
成就勋章
TA的专栏
  • 嵌入式学习
    2篇
  • 文献阅读
    4篇
  • 代码bug
    1篇
  • 笔试面试记录
    1篇
  • 雅思
    1篇
  • 深度学习
    2篇
  • 自然语言处理
    6篇
  • 机器学习
    8篇
  • 数据结构与算法学习
    7篇
  • 数学基础学习
    2篇
  • 数据分析
    1篇
兴趣领域 设置
  • 编程语言
    pythonc++
  • 数据结构与算法
    算法剪枝
  • 大数据
    时序数据库
  • 人工智能
    计算机视觉机器学习深度学习神经网络自然语言处理sklearnpytorchboostingtransformer超分辨率重建图像处理聚类
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

单片机入门——单片机资源介绍、二进制十进制十六进制

答:则P3M1 b00100000(P37P36P35P34P33P32P31P30) ->0x20,P3M0 b0010 0000 ->0x20。如果把P30、P31、P32、P33、P34、P36、P37配置成准双向口,则M0、M1配置为0。0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F(不区分大小写)0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F(不区分大小写)十六进制的使用场景: 单片机寄存器的配置、与运算,或运算等。P3M0和P3M1配置IO模式。
原创
发布博客 2023.02.24 ·
3506 阅读 ·
4 点赞 ·
1 评论 ·
5 收藏

单片机入门——什么是单片机?

单片机就是一个集成电路芯片,是一个采用超大规模集成电路技术将具有数据处理能力的CPU,存储器,IO端口,定时器等功能集成到一个硅片上,具有小而完整的微型计算机系统。就是将复杂的计算机系统 进行裁剪,然后封装起来,可以实现一定功能的微型小电脑。单片机就是可以经过二次的硬件和软件开发,实现不同的功能,满足不同需求的芯片(非官方)
原创
发布博客 2023.02.24 ·
2890 阅读 ·
1 点赞 ·
0 评论 ·
14 收藏

医学图像——《Difficulty-aware Meta-learning for Rare Disease Diagnosis》

这篇文章提出方法解决罕见疾病分类问题。使用 ISIC 2018 skin lesion 分类数据集验证模型,每个类别仅展示5个样本训练,该模型可以快速的在未见过的类别上达到 83.3% 的分类准确率。他们提出了一个有困难意识的元学习模型,可以在期间动态监控学习任务的重要性。
原创
发布博客 2023.01.09 ·
620 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

解决UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0x80 in position 0: illegal multibyte sequence问题

2、解决UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 0: illegal multibyte sequence问题。1、解决Python报错UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 658: illegal multibyte。
原创
发布博客 2022.09.25 ·
13434 阅读 ·
12 点赞 ·
0 评论 ·
7 收藏

奇安信——算法实习笔试(2022.5.8)

​单选20道,多选10道,编程2道。
原创
发布博客 2022.09.01 ·
545 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

双光融合调研

双光融合是“微光+热像仪”双通道,即可见光通道以及红外光通道二合一。它同时运用红外、微光技术使之在不同的波长进行成像,同步探测目标的二维几何空间与一维光谱信息,然后利用一定的图像处理算法对多波段图像进行分析处理,充分利用各种信道中的有用信息合成图像。多应用在双光融合的测温热像仪,一般会配合平台软件使用。可见光通道可以展现目标实时的动态,作用等同于摄像头;红外光通道可以展示测温结果,以热像图的方式来展示现场温差以及温度数值。这样,避免了单一热像设备或者人员现场拍摄图像模糊不清,需要去问题点现场再次查看的弊端,
原创
发布博客 2022.08.17 ·
4000 阅读 ·
6 点赞 ·
0 评论 ·
56 收藏

我要每天进步一点点

发布动态 2022.07.28

视频人体行为检测

视频检测通常处理思路。
原创
发布博客 2022.07.27 ·
2063 阅读 ·
1 点赞 ·
0 评论 ·
31 收藏

雅思听力——剑雅5——Text1

同义替换生词同义替换生词同义替换生词同义替换生词。
原创
发布博客 2022.07.27 ·
263 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

0/10

发布动态 2022.07.25

啊啊啊我进步了,3/10 Section 3

发布动态 2022.07.24

被自己差到了 Section 2 0/10

发布动态 2022.07.24

雅思听力打卡1 0/10 我的进步空间很大哦~

发布动态 2022.07.24

dropout层、线性层、layernorm

nn.dropout 每次将 p 元素设置为 0,剩下的元素乘以 1/(1-p)eval()模式不进行dropout使用方法如下:
原创
发布博客 2022.07.11 ·
837 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RNN-LSTM

one to one:图像分类 image classificationone to many:看图说话 image captioningmany to one:情感分析 sentiment classification/音乐分类many to many:机器翻译 senquence to sequencemany to many:语言模型/NER tagging结构:只有输入x和隐藏状态h递归,RNN是一个链式结构,每个时间片使用的是相同的参数。以序列(sequence)为输入,在序列的演进方向递归在时间
原创
发布博客 2022.07.02 ·
312 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

字符级文本生成LSTM

LSTM生成字符级文本
原创
发布博客 2022.06.30 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

自然语言处理——word2vec项目实战——从Word2Vec到FastText

从Word2Vec到FastTextWord2Vec在深度学习中的应⽤⽂本⽣成(Word2Vec + RNN/LSTM)⽂本分类(Word2Vec + CNN)文本生成神经网络:一堆公式组成的非线性回归模型普通神经网络[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5L4DEtMn-1653990033441)(E:/A%20wangdanxu/%E6%9D%82%E7%89%A9/typore/image-20220531162244167.png)]带记
原创
发布博客 2022.05.31 ·
235 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习——李宏毅第一课2020

李沐深度学习课程预测宝可梦的战斗力RegressionMarket Forecast——预测明天股价如何?self-driving car——预测方向盘角度Recommendation——购买可能性(推荐系统)f(x(宝可梦))=y  ′  CP  after  evolution  ′f(x(宝可梦))=y\;'\;CP\;after\;evolution\;'f(x(宝可梦))=y′CPafterevolution′xcp:进化前战斗力、xs:物种、xhp:生命值、xw:重量、xh
原创
发布博客 2022.05.30 ·
197 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

自然语言处理——word2vec项目实战—— 情感分析

bag of words + 随机森林(有标签数据)import osimport reimport numpy as npimport pandas as pdfrom bs4 import BeautifulSoupfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.metrics impor
原创
发布博客 2022.05.28 ·
671 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

自然语言处理——word2vec项目实战—— Word2VEec理论基础

Word2VEec理论基础NLP常见任务自动摘要指代消解(小明放学了,妈妈去接【他】)机器翻译(小心地滑->Slide carefully)词性标注(heat(v.) water(n.) in(p.) a(det.) pot(n.))分词(中文日文等) 大水沟/很/难/过主题识别文本分类NLP处理方法传统:基于规则现代:基于统计机器学习HMM,CRF,SVM,LDA,CNN …“规则”隐含在模型参数里图像是原始数据,但是自然语言是人的智慧的结晶,所以利用机器学
原创
发布博客 2022.05.16 ·
603 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多