[摘 要]本文研究带优先级的多服务台的随机模拟排队系统中的排队次序问题,为各个排队顾客引入服务优先级,利用Monte Carlo算法对服务系统进行仿真计算,预测其大致接受服务时间区间。在医院病床安排的实例中,借助于计算机操作系统中的动态优先级调度算法,可减少患者平均等待入院时间,从而提高服务台的利用率,同时减小了顾客最长等待时间。该方法有较强应用价值。
[关键词]等待时间 优先级 蒙特卡洛 服务时间
一、问题提出
(一)问题叙述
现实中的很多服务,等待时间超过一天,比较典型的是医院住院及手术安排的问题。尽管随机服务与排队论问题早已得到深入研究,但某服务系统共有服务台M个,其服务分四大类:每种服务目前的规则是:每周一、三处理 ;而是紧急服务,处理中心有空闲时立即安排处理,其他服务可根据需要安排,但是不安排在周一、周三。系统的示意图见图1。本文要研究的问题是如何建立数学模型,实现对服务台的合理安排,根据目前接受服务顾客及等待接受服务顾客的统计情况,在开始排队时预测其大致接受服务时间区间。
(二)名词解释
1.等待服务时间(等待时间):顾客从开始排队到进入服务台的时间。
2.最长等待时间:等待时间最长的顾客需要等待的时间。
3.动态优先级调度算法:Monte Carlo算法的一种,计算机操作系统中CPU调度的经典算法之一,利用动态优先级实现对就绪进程的调度。就绪进程占用CPU时间愈长,该进程优先级越低,反之,优先级越高;就绪进程等待CPU时间越长,优先级越高,反之越低。在该模型中引入此算法,相当于降低用户平均等待时间和最长等待时间,从而提高顾客的满意程度和服务系统服务台利用率。
二、问题研究
(一)基本假设
1.服务系统条件充分,而且预测的时间范围内,顾客到来情况是平稳的,且顾客按正常时间离开,无长时间占用服务台的现象。
2.假设顾客到来的事件流是一泊松流,且不会等待不耐烦而离去。
3.各个服务台功能相同。
(二)符号说明
: 平均等待时