实验 3多服务台排队系统的仿真
姓名: 学号:
一、目标任务
已知一个系统有N 个服务员,能力相等,服务时间服从指数分布。顾客的到达时间间隔
服从指数分布。用 Monte-Carlo 仿真,分别求按下列方案的总体平均排队时间:
① M|M|N 。
② N 个单通道系统并列,按 1/N 概率分裂到达流。
③ N 个单通道并列,挑选最短的队。
要求:
① 给出程序设计的过程。
② 如果采用固定的 N ,则要求N>2 。
③ 至少取 ρ=0.3 和 ρ=0.7 两种强度运行程序。
④ 对结果进行分析。
二、编程语言
Matlab
三、关键代码
方案一:
N = 3; % 服务员人数
r = 6; % 顾客到达流强度
u = 20; % 服务员服务强度
T = 1000000; % 仿真运行时间
avg_wait_time = []; % 平均等待时间
for i=1:100
% 模拟排队函数
server_time = [0.0, 0.0, 0.0]; % 用来保存服务员下一空闲时间
time = 0; % 绝对时钟,初始为 0
client_num = 0; % 顾客总数,初始为 0
CRTime = 0; % 顾客到达时间间隔
ServeTime = 0; % 顾客服务时间
server_id = 0; % 当前进入排队窗口的服务员编号
total_wait_time = 0;% 系统中到达顾客的总等待时间
while 1
CRTime = exprnd(1/r); % 按指数分布产生顾客到达时间间隔
time = time + CRTime; % 更新系统的绝对时钟
if time > T
break;
end
client_num = client_num + 1; % 顾客数加 1
ServeTime = exprnd(1/u); % 按指数分布产生顾客服务间隔
server_id = mod(client_num, N); % 按 1..N 的顺序循环排入服务员窗口
if server_id ==0
server_id = N;
end
if server_time(1, server_id) <= time % 如果当前 server_id 号服务员空闲,则直
接接收服务
server_time(1, server_id) = time + ServeTime; % 服务员下一空闲时间为当
前绝对时钟加上当前服务时间
else % 否则所有服务员都在忙碌,顾客要排队等候
total_wait_time = total_wait_time + server_time(1, server_id) - time; % 顾客
排队等候时间为当前服务员下一空闲时间减去绝对时钟
server_time(1, server_id) = server_time(1, server_id) + ServeTime;
end
end
avg_wait_time = [avg_wait_time, total_wait_time/client_num];
end
% 计算平均等待时间
mean_avg_wait_time = mean(avg_wait_time);
fprintf('ρ=%2.1f 平均等待时间 %6.5f\n', r/u, mean_avg_wait_time); % 打印平均等待时
间
% 绘制每次仿真的平均等待时间和总体平均等待时间线状图
x