Survey of Personalization Techniques for Federated Learning

Survey of Personalization Techniques for Federated Learning

  • 摘要
    • 联邦学习使机器学习模型能够在不损害隐私的情况下从私有的分散数据中学习
    • 由于跨设备的非独立同分布数据分布导致的统计异构通常会导致这样的场景:对于一些客户端,仅在其私有数据上训练的本地模型比全局共享模型表现更好,从而剥夺了他们参与过程的动机。已经提出了几种技术来对全局模型进行个性化,以便更好地为个人客户工作。
  • 介绍
    • 联邦学习为的就是隐私安全和通信问题
    • 通过消除在单个设备(云)上聚合所有数据的需要,联邦学习克服了上述隐私和通信挑战,并允许机器学习模型在分散的数据上学习。
    • 它在移动设备上的下一个词预测问题上表现出了良好的性能和稳健性 [4]。
      • 4 Andrew Straiton Hard et al. “Federated Learning for Mobile Keyboard Prediction” arXiv: Computation and Language(2018): n. pag.
    • 博纳维茨等。 阿尔。 [5] 提出了一个可扩展的系统,为移动设备实现大规模联邦学习。
      • 5 Keith Bonawitz et al. “Towards Federated Learning at Scale: System Design” arXiv: Learning(2019): n. pag.
    • 凯鲁兹等。 阿尔。 [6] 讨论该领域的广泛挑战和未解决的问题。
      • 6 Peter Kairouz et al. “Advances and Open Problems in Federated Learning” (2021).
    • 客户参与联邦学习的主要动机是获得更好的模型。 私人数据不足以开发准确的本地模型的客户将从协作学习模型中受益最大。 然而,对于拥有足够私人数据来训练准确本地模型的客户来说,参与联邦学习的好处是有争议的。 余等。 [7] 表明,对于许多任务,一些参与者可能不会通过参与获得任何好处,因为全局共享模型不如他们自己训练的本地模型准确。
      • 7 Tao Yu et al. “Salvaging Federated Learning by Local Adaptation” arXiv: Learning(2020): n. pag.
    • 本文的目的是调查最近关于在联合学习环境中为客户构建个性化模型的研究,这些模型有望比全球共享模型或本地个体模型更好地工作。
  • Need for Personalization
    • 吴等。 [9]列出了与个性化相关的联邦学习系统面临的三个挑战:(1)存储、计算和通信能力方面的设备异构性; (2) 由于数据非独立同分布而产生的数据异构性; (3) 由于不同客户需要专门针对其环境定制的模型而产生的模型异质性。 作为模型异质性的示例,请考虑以下句子:“我住在……”。 应用于该句子的下一个单词预测任务需要预测为每个用户定制的不同答案。 如果数据中不存在异质性,则标签中可能存在异质性; 不同的客户端可能会为相同的数据分配不同的标签。这个与那篇文章有着相同的目的。
    • Bagdasaryan 等人。 [13] 指出,差异化隐私机制的成本是准确性的降低,并且这种成本由客户不平等地承担,其中代表性不足或尾部参与者受到的影响最严重。
  • Techniques
    •  3.1 添加用户上下文
      • 如果客户的上下文和个人信息被适当地特征化并纳入数据集中,共享的全局模型也可以生成高度个性化的预测。 然而,大多数公共数据集不包含上下文特征,开发有效结合上下文的技术仍然是一个重要的开放性问题,具有提高联邦学习模型[6]效用的巨大潜力。 如果可以在不对隐私产生不利影响的情况下执行这种上下文特征化,还有待研究。 作为单一全球模型和纯局部模型之间的中间方法,Masour 等人。 [17] 建议用户聚类,其中将相似的客户分组在一起,并为每个组训练一个单独的模型。==Begin-Community-Structured Decentralized Learning for Resilient EI
    • 3.2迁移学习
      • 迁移学习也称为微调,它很好地集成到典型的联邦学习生命周期中。
    • 3.3多任务学习
      • [24] 表明,多任务学习是构建个性化联邦模型的自然选择,并在联邦环境中开发用于多任务学习的 MOCHA 算法,以解决与通信、落后者和容错相关的挑战。
    • 3.4元学习
      • 作者还观察到,仔细的微调可以产生可以轻松个性化的高精度全局模型,但单纯地针对全局精度进行优化会损害模型后续个性化的能力。
    • 3.5 知识蒸馏(挺感兴趣的)
      • 卡鲁阿纳等。 [23] 已经证明可以将模型集合的知识压缩到一个更容易部署的模型中。 知识蒸馏 [30] 进一步发展了这个想法,包括通过让学生模仿教师,将大型教师网络的知识提取到较小的学生网络中。 过度拟合在个性化过程中构成了重大挑战,特别是对于本地数据集较小的客户。 余等。 [7] 提出,通过将全局联邦模型视为教师,将个性化模型视为学生,可以减轻个性化过程中过度拟合的影响。 李等。 [31] 提出了 FedMD,这是一种基于知识蒸馏和迁移学习的联邦学习框架,允许客户使用本地私有数据集和全球公共数据集独立设计自己的网络。
    • 3.6 基础+个性化层
      • [32] 提出了 FedPer,这是一种神经网络架构,其中基础层通过联合平均进行集中训练,顶层(也称为个性化层)通过梯度下降的变体在本地进行训练。 与首先在全局数据上训练所有层然后在本地数据上重新训练所有层或某些层的迁移学习相反,FedPer 分别在全局数据上训练基础层和在本地数据上训练个性化层。
    • 3.7 全球和本地模型的混合
      • 汉泽利等。 [8] 提出了一种不同的问题表述,寻求在全局模型和局部模型之间进行明确的权衡。 每个设备不是学习单一的全局模型,而是学习全局模型和它自己的本地模型的混合体。 为了解决该公式,作者开发了一种称为无环局部梯度下降 (LLGD) 的梯度下降的新变体。 LLGD 不执行完全平均,而是只采取步骤进行平均,因此表明联邦平均等完全平均方法可能过于激进。
  • 讨论
    • 当客户端拥有足够大的私有数据集并且数据分布是非 IID 时,本地模型表现出比共享全局模型更好的性能,并且客户端没有动力参与联邦学习过程。 一个悬而未决的理论问题是确定共享全局模型在哪些条件下可以比单个本地模型表现更好。这个应该就是我理解的个性化联邦学习所需要解决的问题
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值