十隔日推算法_年、月、日、时干支推算法

本文介绍了年、月、日干支的推算法。年干支可通过公式“取当年年数减三,除干支周转数,余数为所求年干支代数”计算;月干支以农历计算,从“寅月”开始,可借助“五虎建元”歌推算;日干支用阳历,以元旦日干为基数,结合各月加减规则计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

年、月、日、时干支的推算法

一、干支结合纪年:

干支配合可以用来纪年、月、日、时,都可依据其所属干支的属性来分析这一年、月、日、时的变化大致情况。在研究子午流注开穴,推演五运六气变化等过程中,都必须掌握年、月、日、时干支。目前我们采用公元纪年,就需要将公元换算干支,以利应用。

干支纪年,其方法是把每一年配上一个天干和一个地支。配的方法是天干在上,地支在下,按着干支的顺序依次向下排列。天干的第一位是甲与地支第一位子相互配合起来便是甲子,这一年就叫甲子年。从甲子年开始天干和地支相配合,每年不同,天干往复排列六次,地支往复排列五次,共得六十年。以后又转到甲和子相合,所以每六十年称为一周,或者叫一个甲子。我们一般把一个快满六十岁的人称为年近花甲,这就是因为六十年是一个甲子的意思。为了避免临时换算麻烦,现将干支相合一周的次序,排列如后:

古代历法,计年月日时皆由甲子开始,——年分十二个月,一日分十二个时辰。每逢五年有六十个月,五天则有六十个时辰。为便于记忆,有一首歌诀(见本书二十四页十六行)。

因为甲己、乙庚等皆隔五数,由甲至己周而复始。甲己之年由甲子月开始,一月是甲子月。甲己之日由甲子时开始,第一个时辰是甲子时。乙庚年、日,第一月则为丙子,丙辛年、日,第一月则为戊子,丁壬年、日,第一月则为庚子,戊癸年、日,第一月则为壬子。

年干支的推算法;只要知道1982年是“壬戌”年,即可按干支六十环周顺推,则知1983年为“癸亥”年,倒推1981年为辛酉,1980年为庚申年。如果不知道当年的干支或任何一年的干支怎么办呢?可采取如下公式:“取当年的年数,减去三,再从余数中除去干支周转数,余下的数字就是所求的年干支的代数。

例如:欲求1982年干支,1982—3:1979÷60(在1979这个数中共有32个60,即干支周转数),余下的59,按六十环顺推,就是“壬戌”,则知1982年干支为壬戌年。

又如:1983(年)—3=1980;以1980÷60(干支周数)=33余0,零表示六十甲子环最后一个,就是癸亥,可知“癸亥”是1983年的干支。

年数为什么要减三?这是因为公元四年恰好是甲子,从公元四年起,就要减去公元四年前的三年。所以只要知道上述算法,年数减三,所余之数除去干支60的周转数,余下的数就是所求的年干支代数。这个公式适用于公元四年以后的任何一年。

根据地球绕太阳公转一周需时365天5时48分46秒,积四年的零余便成为一天,所以闰年的二月份独多一天。明白了这个道理,就可理解四年一闰的道理了。至于求何年为闰年,最简单的方法,是用四去除公元数,凡能除尽者为闰年,除不尽者为平年。但需注意,每百年停闰,每四百年又停闰。这是因为四年加一天又多了四十四分五十六秒,积满128年左右就又多了一天,也就是说,在四百年中约多算了三天。因此,这样就巧妙地在四百年中减去了三天,防止了误差。这个推算法,是从格里历得来的,从1912年开始使用的。

二、月千支推算法:

推算月干支,以农历计算,每年的—卜一月都是“子月”,五月都是“午月”,而一月都是“寅”月,这是固定不变的。这种安排次序同天干一样也是以事物的发展规律为依据的。一般推算月干支皆从“寅月”开始。为便于推算,宜牢记“五虎建元”歌,即可迅速推出,歌诀是:

甲己之辰起丙寅,乙庚之日戊寅行,

丙辛便起庚寅始,丁壬壬寅亦顺寻,

戊癸甲寅定时候,五门得合是元因。

(注:“五虎”十干分为五阴干五阳干,基本均以寅时为推算时间,因“寅”在十二肖属虎,故名五虎。“元”,本元的意思。五门即五虎。)

甲己二日:以寅上起丙,它的一月均为丙寅时。

乙庚二日:以寅上起戊,一月均为戊寅时。

丙辛二日:以寅上起庚,一月均为庚寅时。

丁壬二日:以寅上起壬,一月均为壬寅时。

戊癸二日:以寅上起甲,它的一月均为甲寅时。

例如:甲己之辰起丙寅,甲、己日寅时均为“丙寅”,时顺次推为“丁卯”、戊辰、己巳、庚午、辛未、壬申、癸酉。到了戌时则为甲戌,经甲戌向上推(癸酉,壬申、辛来,庚午,己巳、戊辰丁卵、丙寅、乙丑)则成为甲子、甲寅,甲辰、甲午、甲申,是为

六甲之周期,六乙、六丙……均以五虎建元法推算。

三、日干支推算法:

推算日干支用阳历,因为农历的大小月和闰月不固定,推算日干较复杂。而阳历则不同,它除了每四年有一次闰二月外,每年的大小月都是固定不变的。大月3l天,小月30天,唯二月2S天(闰年每一天),所以用阳历推算日干较方便。为便于记忆,附推算日干歌诀如下:

推算日干用阳历,元旦日干做为基,

一四五月各减一,三月减二支加十,

二六七月不加减:八月加一九加二,

冬腊两月各加三,十月加二耍牢记,

闰年三月后加一,得数去整取零余。

附:各月干支加减表解

基数推算法:日干排列的顺序是甲乙丙丁戊己庚辛壬癸,按1 2 3 4 5 6 7 8 910排列,每隔日周转一次,因此每隔10天日干都是相同的。例如:一日是甲,那么11、21、31都是甲日;2日是乙。那么12、22电都是乙日。

①以每年阳历元旦日干做基数:如1982牛元旦是甲申,甲是日干中的第1个,因此l就是1982年的日干基数。

②加上当天日数:例如8月6日,就加6,若是9月13日就加13。

③然后再按一四五月减一,三月减二,二六七月不加不减,八月加——,九、十月加二,十一月,十二月加三。若遇到闰年则自三月至十二月再加一计算,将得出的数字去整取零,按日干的排列顺序对照,这样就可得出本年里任何一天的日干。

例如:求,982年7月11日的日干,其公式如下1+11=12(2、6、7月不加不减),12去整取零等于2。又如求1983年8月5日的日干,按公式推算如下:1983年元旦是己丑,其日干顺序是6(6做基数)6十1+5=12去整取零等于2。按日干的排列顺序是乙。乙就是1983年8月5日的日干,余者以此类推。

[本文共有 2 页,当前是第 1 页] <>

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的度竞赛。参赛团队需在规定间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定期数据,或是模拟过程中用到的间序列数据。 从这些文件可以测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值