同指数幂相减公式_初二数学整式的乘法,掌握乘法公式结构特征是关键,运用有技巧...

初二数学中,整式的乘法与因式分解这一章,一直是中考的主要考点,也是初二比较重要的知识点之一,对于整式的乘法,掌握同底数幂、幂的乘方、积的乘方、单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘等的法则是解决这部分题目的关键,只要同学们掌握了对应的法则,熟练的运用,这部分的题目基本上没有太大的难点。而后面学习的乘法公式这部分,则相对于前面的难度有所增加,主要是需要找寻对应的乘法公式的结构特征,在给定的式子中找出规律,然后就行作答。因此掌握乘法公式结构特征是关键,而在运用中也是有技巧的。

979a59dc119d01062b77009fa433a4a2.png

在乘法公式中,主要有两个公式,分别是平方差公式和完全平方公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差。同学们需要注意的是公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等式子,只要符合公式的结构特征,就可以运用这一公式。完全平方公式是两数和(或差)的平方,等于它们的平方和,加上(或减去)他们的积的两倍。同学们除了要掌握他们的定义公式之外,还要熟知它们的变形。

2fc51e55903b5c338d25814b41477335.png

在掌握了上面的基础的知识点之后,乘法公式需要注意几个问题,希望同学们能够理解,并在题目中灵活运用。应用平方差公式运算时,应注意以下几点:①两个多项式必须具备平方差公式左边的结构特征才能运用平方差公式;②因式的位置关系:通常完全相同的项在前面(即公式中的a),互为相反数的项在后面(即公式中的b),前后位置不能乱,运算是求差。如:(-1-x)·(1-x)中应是(-x)与1的和,(-x)与1的差,则公式中的a相当于这里的“-x”,而b相当于“1”,故应等于(-x)^2-1^2;③因为公式中的字母a,b可以是一个数、一个单项式或一个多项式,所以当这个字母表示一个负数,或字母的积,或多项式时,要将它们用括号括起来,以免发生系数写错、指数写错或意义不同等错误。

c8faf106c74e2fe142af0305f7c8b4a5.png

在应用完全平方公式时,应注意以下几点:①这两个公式一个是两数和的平方,另一个是两数差的平方,两者仅一个符号不同,结构中两数的平方和是一样的,加(或减)这两数的积的2倍,交叉项是一正一负,仅一个符号不同,要注意区分,关键是符号不可出错。②要确定符合公式的条件,关键认准两个数(或式),然后看是否为两数(或式)的和(或差)的平方,右边是三项,不要漏项。③注意与平方差公式的区别,两者不要混淆了。

d137f9652dc47edcbec4ca73cc11c9b4.png

例如:(1)、(2x+y-3)(2x-y-3);(2)、(2x+y-3)(2x-y+3);(3)、(2a+1/2b)^2(2a-1/2b)^2.

【解析】先整体观察,再合理裂项,最后套用公式。第三题中若先应用完全平方公式,则项数增多,计算复杂,而应用平方差公式,通常会减少项数,使计算简便。(1)原式=[(2x-3)+y][(2x-3)-y]=(2x-3)^2-y^2=4x^2-12x+9-y^2=4x^2-y^2-12x+9.(2)原式=[2x+(y-3)][2x-(y-3)]=(2x)^2-(y-3)^2=4x^2-(y^2-6y+9)=4x^2-y^2+6y-9.(3)原式=[(2a+1/2b)(2a-1/2b)]^2=(4a^2-1/4b^2)^2=16a^4-2a^2b^2+1/16b^4.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值