有人第一次把SparkCore说的这么明白!!!!

RDD

  1. 概念

RDD(Resilient Distributed Dateset),弹性分布式数据集

  1. RDD的五大特性:
  1. RDD是由一系列的partition组成的。
  2. 函数是作用在每一个partition(split)上的。
  3. RDD之间有一系列的依赖关系。
  4. 分区器是作用在K,V格式的RDD上。
  5. RDD提供一系列最佳的计算位置。
  1. RDD理解图:

 

  1. 注意:
  • textFile方法底层封装的是读取MR读取文件的方式,读取文件之前先split,默认split大小是一个block大小
  • RDD实际上不存储数据,这里方便理解,暂时理解为存储数据。
  • 什么是K,V格式的RDD?
  • 如果RDD里面存储的数据都是二元组对象,那么这个RDD我们就叫做K,V格式的RDD。
  • 哪里体现RDD的弹性(容错)?
  • partition数量,大小没有限制,体现了RDD的弹性。
  • RDD之间依赖关系,可以基于上一个RDD重新计算出RDD。
  • 哪里体现RDD的分布式?
  • RDD是由Partition组成,partition是分布在不同节点上的。
  • RDD提供计算最佳位置,体现了数据本地化。体现了大数据中“计算移动数据不移动”的理念。
  1. Spark任务执行原理

 

 

以上图中有四个机器节点,Driver和Worker是启动在节点上的进程,运行在JVM中的进程。

  • Driver与集群节点之间有频繁的通信。
  • Driver负责任务(tasks)的分发和结果的回收。任务的调度。如果task的计算结果非常大就不要回收了。会造成oom。
  • Worker是Standalone资源调度框架里面资源管理的从节点。也是JVM进程。
  • Master是Standalone资源调度框架里面资源管理的主节点。也是JVM进程。
  1. Spark代码流程
  2. 创建SparkConf对象
  • 可以设置Application name。
  • 可以设置运行模式及资源需求。
  1. 创建SparkContext对象
  2. 基于Spark的上下文创建一个RDD,对RDD进行处理。
  3. 应用程序中要有Action类算子来触发Transformation类算子执行
  4. 关闭Spark上下文对象SparkContext。
  1. Transformations转换算子

  1. 概念:

Transformations类算子是一类算子(函数)叫做转换算子,如map,flatMap,reduceByKey等。Transformations算子是延迟执行,也叫懒加载执行。

  1. Transformation类算子:
  • filter

过滤符合条件的记录数,true保留,false过滤掉。

 

  • map

将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素。

特点:输入一条,输出一条数据。

 

  • flatMap

先map后flat。与map类似,每个输入项可以映射为0到多个输出项。

 

  • sample

随机抽样算子,根据传进去的小数按比例进行又放回或者无放回的抽样。

 

  • reduceByKey

将相同的Key根据相应的逻辑进行处理。

  • sortByKey/sortBy

作用在K,V格式的RDD上,对key进行升序或者降序排序。

  1. Action行动算子

  1. 概念:

Action类算子也是一类算子(函数)叫做行动算子,如foreach,collect,count等。Transformations类算子是延迟执行,Action类算子是触发执行。一个application应用程序中有几个Action类算子执行,就有几个job运行。

  1. Action类算子
  • count

返回数据集中的元素数。会在结果计算完成后回收到Driver端。

 

  • take(n)

返回一个包含数据集前n个元素的集合。

 

  • first

first=take(1),返回数据集中的第一个元素。

 

  • foreach

循环遍历数据集中的每个元素,运行相应的逻辑。

 

  • collect

将计算结果回收到Driver端。

 


代码:

package com.bjsxt.demo;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;
/**
 * 动态统计出现次数最多的单词个数,过滤掉。
 * @author root
 *
 */
public class Demo1 {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("demo1");
		JavaSparkContext jsc = new JavaSparkContext(conf);
		JavaRDD<String> lines = jsc.textFile("./records.txt");
		JavaRDD<String> flatMap = lines.flatMap(new FlatMapFunction<String, String>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Iterable<String> call(String t) throws Exception {
				return Arrays.asList(t.split(" "));
			}
		});
		JavaPairRDD<String, Integer> mapToPair = flatMap.mapToPair(new PairFunction<String,String, Integer>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Tuple2<String, Integer> call(String t) throws Exception {
				return new Tuple2<String, Integer>(t, 1);
			}
		});
		
		JavaPairRDD<String, Integer> sample = mapToPair.sample(true, 0.5);
		
		final List<Tuple2<String, Integer>> take = sample.reduceByKey(new Function2<Integer,Integer,Integer>(){

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Integer call(Integer v1, Integer v2) throws Exception {
				return v1+v2;
			}
			
		}).mapToPair(new PairFunction<Tuple2<String,Integer>, Integer, String>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Tuple2<Integer, String> call(Tuple2<String, Integer> t)
					throws Exception {
				return new Tuple2<Integer, String>(t._2, t._1);
			}
		}).sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer,String>, String, Integer>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Tuple2<String, Integer> call(Tuple2<Integer, String> t)
					throws Exception {
				return new Tuple2<String, Integer>(t._2, t._1);
			}
		}).take(1);
		
		System.out.println("take--------"+take);
		
		JavaPairRDD<String, Integer> result = mapToPair.filter(new Function<Tuple2<String,Integer>, Boolean>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Boolean call(Tuple2<String, Integer> v1) throws Exception {
				return !v1._1.equals(take.get(0)._1);
			}
		}).reduceByKey(new Function2<Integer,Integer,Integer>(){

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Integer call(Integer v1, Integer v2) throws Exception {
				return v1+v2;
			}
			
		}).mapToPair(new PairFunction<Tuple2<String,Integer>, Integer, String>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Tuple2<Integer, String> call(Tuple2<String, Integer> t)
					throws Exception {
				return new Tuple2<Integer, String>(t._2, t._1);
			}
		}).sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer,String>, String, Integer>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Tuple2<String, Integer> call(Tuple2<Integer, String> t)
					throws Exception {
				return new Tuple2<String, Integer>(t._2, t._1);
			}
		});
		
		result.foreach(new VoidFunction<Tuple2<String,Integer>>() {
			
			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public void call(Tuple2<String, Integer> t) throws Exception {
				System.out.println(t);
			}
		});
		
		jsc.stop();
		
	}
}
  1. 控制算子

控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化,持久化的单位是partition。cache和persist都是懒执行的。必须有一个action类算子触发执行。checkpoint算子不仅能将RDD持久化到磁盘,还能切断RDD之间的依赖关系。

  1. cache

默认将RDD的数据持久化到内存中。cache是懒执行。

  • 注意:chche () = persist()=persist(StorageLevel.Memory_Only)
  • 测试cache文件:

文件:见“NASA_access_log_Aug95”文件。

测试代码:


 SparkConf conf = new SparkConf();

 conf.setMaster("local").setAppName("CacheTest");

 JavaSparkContext jsc = new JavaSparkContext(conf);

 JavaRDD<String> lines = jsc.textFile("./NASA_access_log_Aug95");



 lines = lines.cache();

 long startTime = System.currentTimeMillis();

 long count = lines.count();

 long endTime = System.currentTimeMillis();

 System.out.println("共"+count+ "条数据,"+"初始化时间+cache时间+计算时间="+

          (endTime-startTime));

       

 long countStartTime = System.currentTimeMillis();

 long countrResult = lines.count();

 long countEndTime = System.currentTimeMillis();

 System.out.println("共"+countrResult+ "条数据,"+"计算时间="+ (countEndTime-

           countStartTime));

       

 jsc.stop();
  1. persist:

可以指定持久化的级别。最常用的是MEMORY_ONLY和MEMORY_AND_DISK。”_2”表示有副本数。

持久化级别如下:

 

  • cache和persist的注意事项:
  1. cache和persist都是懒执行,必须有一个action类算子触发执行。
  2. cache和persist算子的返回值可以赋值给一个变量,在其他job中直接使用这个变量就是使用持久化的数据了。持久化的单位是partition。
  3. cache和persist算子后不能立即紧跟action算子。
  4. cache和persist算子持久化的数据当applilcation执行完成之后会被清除。

错误:rdd.cache().count() 返回的不是持久化的RDD,而是一个数值了。

  1. checkpoint

checkpoint将RDD持久化到磁盘,还可以切断RDD之间的依赖关系。checkpoint目录数据当application执行完之后不会被清除。

  • checkpoint 的执行原理:
  1. 当RDD的job执行完毕后,会从finalRDD从后往前回溯。
  2. 当回溯到某一个RDD调用了checkpoint方法,会对当前的RDD做一个标记。
  3. Spark框架会自动启动一个新的job,重新计算这个RDD的数据,将数据持久化到HDFS上。
  • 优化:对RDD执行checkpoint之前,最好对这个RDD先执行cache,这样新启动的job只需要将内存中的数据拷贝到HDFS上就可以,省去了重新计算这一步。
  • 使用:

 SparkConf conf = new SparkConf();

 conf.setMaster("local").setAppName("checkpoint");

 JavaSparkContext sc = new JavaSparkContext(conf);

 sc.setCheckpointDir("./checkpoint");

 JavaRDD<Integer> parallelize = sc.parallelize(Arrays.asList(1,2,3));

 parallelize.checkpoint();

 parallelize.count();

 sc.stop();

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值