【lc刷题】121 买卖股票的最佳时机(DP)_Day13(44/300)

本文通过实例解析了如何使用动态规划解决LeetCode第121题——买卖股票的最佳时机。在给定的一组股票价格中,确定何时买入和卖出股票以获得最大利润。当买入后必须先卖出才能再次买入,且只能完成一笔交易。文章介绍了具体的动态规划思路和解题过程。
摘要由CSDN通过智能技术生成

44/300

  1. 买卖股票的最佳时机
     
    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
     
    如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
     
    注意你不能在买入股票前卖出股票。
     
    示例 1:
     
    输入: [7,1,5,3,6,4]
    输出: 5
    解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
    注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
    示例 2:
     
    输入: [7,6,4,3,1]
    输出: 0
    解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
     
    特殊情况:
    [2,4,1]
    []
    [1]

在这里插入图片描述
动态规划类型,第二道

未来不可知。
第一天:今天比昨天低,那么小本本记下来,今天几块钱。
今天成为昨天。
第二天:今天比昨天高,高出两2块,小本本同样记下来,能赚两块。
今天成为昨天。
第三天:今天比昨天低,赶紧拿来小本本,看跟上次记下来的最低值比,唉,还是比本子上的高,那算了。
今天成为昨天。人生就尼玛过去了。

class Solution:
    def maxProfit(self, prices):
        
        if len(prices) <= 1: return 0
        #小本本:[最低价,最多赚多少]
        memo = [prices[0], 0]
        
        for i in range(1, n):
            
            if prices[i] < prices[i-1]:
                memo[0] = min(prices[i], memo[0])
                
            else:
                memo[1] = max(prices[i] - memo[0], memo[1])
            
        return memo[1]

复习日重写:

class Solution:
    def maxProfit(self, prices: List[int]) -> int:

        min_price, max_profit = float('+inf'), 0
        
        for price in prices:
            if price < min_price:
                min_price = min(min_price, price)
                
            else:
                max_profit = max(max_profit, price - min_price)
                
        return max_profit
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值