【数字电子电路读书笔记(三)】

数字电子电路(三)


第一章 概述

第二章 数制与码制

第三章 逻辑代数

第四章 组合逻辑电路

第五章 触发器

第六章 时序逻辑电路



一、概述

逻辑代数:数字电路分析和设计使用的数学工具

  • "逻辑"是指事件产生的条件和结果之间的因果关系。
  • 逻辑代数是指按照一定逻辑规律进行运算的代数,主要研究逻辑函数和逻辑变量之间的因果关系,而不是数量之间的运算

逻辑变量:一般用大写字母A、B、C、…表示,逻辑变量的取值只有两种,即逻辑0逻辑1

这里的逻辑0和1本身并没有数值意义,它们并不代表数量的大小,而仅仅是作为一种符号,代表事务矛盾双方的两种状态

逻辑函数:与普通代数中的函数相似,因变量随自变量的变化而变化。

数字电路的输入、输出量一般用高、低电平来表示,高、低电平也可以用二值逻辑0和逻辑1来表示,同时数字电路的输出与输入之间的关系是一种因果关系,因此它可以用逻辑函数来描述。

对于任何一个电路,若输入逻辑变量A、B、C、…的取值确定后,其输出逻辑变量F的值随之确定,并具有唯一性,则可以称F是A、B、C、…的逻辑函数,并记为
F = ( A , B , C . . . ) F = (A,B,C...) F=A,B,C...
逻辑关系的表达方法:逻辑真值表,逻辑函数表达式,逻辑图(电路图),波形图,卡诺图,硬件描述语言


二、常见逻辑运算及复合门

1、基本逻辑运算

1)与运算(逻辑乘)

逻辑关系:只有当决定一事件结果的所有条件同时具备时,结果才能发生。(全1才为1)

逻辑函数表达式:F=A·B

在这里插入图片描述

2)或运算(逻辑加)

逻辑关系:只有当决定一事件结果的所有条件中,只要有一个满足,结果就会发生。(有1即为1)

逻辑函数表达式:F=A+B

在这里插入图片描述

3) 非运算(逻辑反)

逻辑关系:逻辑的否定。当条件具备时,结果不会发生;而条件不具备时,结果一定会发生。

逻辑函数表达式:
F = A ‾ ( A ′ ) F = \overline{A}(A') F=A(A)
在这里插入图片描述

基本逻辑关系波形

在这里插入图片描述

2、复合逻辑运算

1、与非门(与运算非运算的组合)

在这里插入图片描述

逻辑函数表达式
F = A ⋅ B ‾ F = \overline{A·B} F=AB
与非逻辑真值表

ABY
001
011
101
110

2)或非门(或运算非运算的组合)

在这里插入图片描述

逻辑函数表达式
F = A + B ‾ F=\overline{A+B} F=A+B
或非逻辑真值表

ABY
001
010
100
110

3)异或门

逻辑关系:当两个输入变量相异时,输出为1;相同时输出为0

在这里插入图片描述

逻辑函数表达式:
Q = A ⨁ B = A ‾ B + A B ‾ Q=A\bigoplus B=\overline AB+A\overline B Q=AB=AB+AB
异或逻辑真值表

ABQ
000
011
101
110

4)同或门

逻辑关系:当两个输入变量相同时,输出为1相异时输出为0(与异或结果相反)

在这里插入图片描述

逻辑函数表达式:
F = A ⊙ B = A ‾ B ‾ + A B F = A ⊙ B = \overline A \overline B+AB F=AB=AB+AB
同或逻辑真值表

ABY
001
010
100
111

异或及同或的应用:

  1. 统计输入A中1的个数是奇数还是偶数
  2. 控制信号的同向或者反向输出

3、逻辑表达式

如何有真值表得出函数表达式:

  1. 把每个输出为1的一组输入变量组合写成乘积项的形式;
  2. 在乘积项中,逻辑值1原变量表示,逻辑值0反变量表示;
  3. 将所有的这写乘积项进行逻辑加

4、三态门

普通逻辑门:逻辑0和逻辑1

三态门还有第三种状态——高阻态,相当于隔断状态

在这里插入图片描述

三态门真值表

使能EN输入A输出F
000
011
10/1Z(高阻值)

EN=0,F=A

EN=1,F为高阻态

在这里插入图片描述

三态门真值表

使能EN输入A输出F
111
100
00/1Z(高阻值)

EN=1,F=A

EN=0,F为高阻态

复合电路:

在这里插入图片描述

F = E N ‾ A + E N B F = \overline{EN}A+ENB F=ENA+ENB
EN=1,F=B EN=0,F=A


三、逻辑函数公式及三个规则

1、逻辑代数公式

1)、常量公式

KaTeX parse error: Expected 'EOF', got '&' at position 15: \boxed{0-1律:}&̲A·0=0&A+1=1\\ \…

2)、与普通代数相似的公式:

KaTeX parse error: Expected 'EOF', got '&' at position 14: \boxed{交换律:}&̲A·B=B·A&A+B=B+A…

3)、特殊公式

①反演律--迪·摩根定律(De Morgan定律)
A ⋅ B ‾ = A ‾ + B ‾ A + B ‾ = A ‾ ⋅ B ‾ \boxed{\overline{A·B} = \overline{A}+\overline{B}}\\ \boxed{\overline{A+B}=\overline{A}·\overline{B}} AB=A+BA+B=AB
②还原律
A ‾ ‾ = A \overline{\overline{A}} = A A=A

4)、合并公式

如果两个与项(或项)分别包含互补的两个因子,而其他因子相同,那么这个与项(或项)为相邻项,可以合并为一项,消去其中互补变量
A B + A B ‾ = A ( B + B ‾ ) = A ( A + B ) ( A + B ‾ ) = A AB+A\overline{B}=A(B+\overline{B})=A\\ (A+B)(A+\overline{B})=A AB+AB=A(B+B)=A(A+B)(A+B)=A

5)、吸收公式(三项)

两个与项相加,如果一个与项AB中的部分因子A恰好是另一个与项A的全部,则该与项AB多余
A + A B = A ⋅ 1 + A ⋅ B = A ( 1 + B ) = A A ( A + B ) = A ⋅ A + A ⋅ B = A ⋅ 1 + A ⋅ B = A ( 1 + B ) = A A+AB=A·1+A·B=A(1+B)=A\\ A(A+B)=A·A+A·B=A·1+A·B=A(1+B)=A A+AB=A1+AB=A(1+B)=AA(A+B)=AA+AB=A1+AB=A(1+B)=A
两个与项相加,如果一个与项A取反后恰好是另一个与项中的部分因子,则该部分因子可以消除
A + A ‾ B = A + B \boxed{A+\overline{A}B = A+B} A+AB=A+B
证明:
KaTeX parse error: Expected 'EOF', got '&' at position 6: A+B &̲=&(A+\overline{…
如果两个乘积项中的部分因子互补(如项和项中和),而这两个乘积项中的其余因子(如和)都是第三个乘积项中的部分因子,则这个第三项是多余的,可以消去
KaTeX parse error: Expected 'EOF', got '&' at position 49: …{A}C\\ 证明:\\ 左 &̲=& AB+\overline…

2、逻辑代数规则

代入规则、反演规则、对偶规则

1)、代入规则

任何一个逻辑等式,如果将等式两边所出现的某一变量都代之以同一逻辑函数,则等式仍然成立,这个规则称为代入规则

2)、反演规则

对于任意一个逻辑函数式F,如果将其表达式中所有的算符·换成+,+换成·,常量0换成11换成0;原变量换成反变量反变量换成原变量,则所得到的结果就是F',称为原函数F的反函数,或称为补函数。
若 F = A B + C ‾ ⋅ D + A C , 则 F ‾ = [ ( A ‾ + B ‾ ) ⋅ C ‾ ‾ + D ‾ ] ( A ‾ + C ‾ ) 若F=\overline{AB+C}·D+AC,则\overline{F}= [\overline{(\overline{A}+\overline{B})·\overline{C}}+\overline{D}](\overline{A}+\overline{C}) F=AB+CD+AC,F=[(A+B)C+D](A+C)
注:

  1. 不能破坏原式的运算顺序,先算括号里的,然后按先与后或的原则运算
  2. 不属于单变量上的非号(长非号)应保留不变

3)、对偶规则

对于任何一个逻辑函数,如果将其表达式F中所有的算符“·”换成“+”,“+”换成“·”,常量“0”换成“1”,“1”换成“0”,而变量保持不变,则得出的逻辑函数式就是F的对偶式,记为Fd

注:

  1. 由原式求对偶式时,运算的优先顺序不能改变

  2. 且式中的长非号也保持不变
    F 1 = ( A + B ‾ ) C + D ‾ + E ‾ ‾ F 1 d = A ⋅ B ‾ + C ⋅ D ‾ ⋅ E ‾ ‾ F_1=(A+\overline{B})\overline{C+\overline{\overline{D}+E}}\\ F_{1d}=A·\overline{B}+\overline{C·\overline{\overline{D}·E}} F1=(A+B)C+D+EF1d=AB+CDE
    任何逻辑函数都存在对偶式,若原等式成立,其对偶式也一定成立,这种逻辑关系称为对偶规则

    “异或”与“同或“是什么关系?

    1、”异或“逻辑与”同或“逻辑互为反函数
    A ⊕ B ‾ = A ⊙ B A ⊙ B ‾ = A ⊕ B \overline{A⊕B} = A⊙B\\ \overline{A⊙B} = A⊕B AB=ABAB=AB
    2、”异或“逻辑与”同或“逻辑互为对偶函数
    F = A ⊕ B = A ‾ B + A B ‾ F d = ( A ‾ + B ) ( A + B ‾ ) = A ‾ B ‾ + A B = A ⊙ B F=A⊕B=\overline{A}B+A\overline{B}\\ F_d=(\overline{A}+B)(A+\overline{B})=\overline{A} \overline{B}+AB =A⊙B F=AB=AB+ABFd=(A+B)(A+B)=AB+AB=AB


    四、逻辑函数标准表达形式

    完备集:对于一个代数系统,若仅用它所定义的一组运算符号就能解决所有的运算问题,则成这一组符号是一个完备的集合

    在逻辑代数中,与、或、非是三种最基本的运算,n变量的所有逻辑函数都可以用n个变量及一组逻辑运算符”·(与)、+(或)、-(非)"来构成,因此称·、+、-运算符是一组完备集

    缺点:电路复杂,成本高

    由反演律得,与和非可得出或,有了或和非可得出与,”与非“、”或非“运算中的任何一种都能单独实现”与、或、非“运算。

    1、与或式

    由若干与项进行逻辑或运算构成的表达式,或者称为乘积项之和,简称”积之和(Sum of Products SOP)“表达式
    L = L 1 + L 2 = S 0 ‾ ⋅ D 0 + S 1 ⋅ D 1 L=L_1+L_2=\overline{S_0}·D_0+S_1·D_1 L=L1+L2=S0D0+S1D1
    2、或与式

    由若干或项进行逻辑与运算构成的表达式。或者称为逻辑和之乘积,简称”和之积(Products of Sum POS)“表达式
    L = L 1 ⋅ L 2 = ( S 0 ‾ + D 0 ) ⋅ ( S 1 + D 1 ) L= L_1·L_2=(\overline{S_0}+D_0)·(S_1+D_1) L=L1L2=(S0+D0)(S1+D1)

1、最小项

n个变量的最小项是n个变量的”与项“,其中每量都以原变量或反变量的形式出现一次

1个变量A 最小项:
A A ‾ A\qquad\overline{A} AA
2个变量A,B 最小项:
A B ‾ , A ‾ B , A B ‾ , A B \overline{AB},\overline{A}B,A\overline{B},AB AB,AB,AB,AB
3个变量A,B,C 最小项:
A ‾ B ‾ C ‾ , A ‾ B ‾ C , A ‾ B C ‾ , A ‾ B C , A B ‾ C ‾ , A B ‾ C , A B C ‾ , A B C \overline{A}\overline{B}\overline{C},\overline{A}\overline{B}C,\overline{A}B\overline{C},\overline{A}BC,A\overline{B}\overline{C},A\overline{B}C,AB\overline{C},ABC ABC,ABC,ABC,ABC,ABC,ABC,ABC,ABC

序号ABCm0 A’B’C’m1 A’B’Cm2 A’BC’m3 A’BCm4 AB’C’m5 AB’Cm6 ABC’m7 ABC
000010000000
100101000000
201000100000
301100010000
410000001000
510100000100
611000000010
711100000001
  • 通常用mi表示最小项,m表示最小项,下标i为最小项编号,用十进制数表示
  • 将最小项中的原变量用1表示,非变量用0表示,可得到最小项的编号
  • 任何一个最小项,只有一组变量取值使它为1,而变量的其余取值均使它为0

最小项的性质:

  1. 在同一组取值下,n变量的全部最小项的逻辑和恒为1,即
    ∑ i = 0 2 n − 1 m i = 1 \sum_{i=0}^{2^n-1}m_i=1 i=02n1mi=1

  2. 在同一组取值下,任意两个不同的最小项的逻辑乘积恒为0,即
    m i ⋅ m j = 0 ( i ≠ j ) m_i·m_j=0(i≠j) mimj=0(i=j)

  3. n变量的每一个最小项有n个相邻项

标准与或式:

如果在一个与或表达式中,所有”与项“均为最小项,则称这种表达式为最小项表达式,或称为标准与或式。
F ( A , B , C ) = A B ‾ C + A B ‾ C ‾ + A B C ‾ = m 5 + m 4 + m 6 = ∑ m ( 4 , 5 , 6 ) F(A,B,C)=A\overline{B}C+A\overline{B}\overline{C}+AB\overline{C} = m_5+m_4+m_6 = \sum{m(4,5,6)} F(A,B,C)=ABC+ABC+ABC=m5+m4+m6=m(4,5,6)
如何用最小项表示逻辑函数:

真值表中使函数值为1的各个最小项相或(加)。

(任何一个函数的真值表是唯一的,因此其最小项表达式也是唯一的)

例:根据真值表写出函数表达式

ABCF
0000
0011
0100
0110
1001
1010
1100
1111

当A、B、C取值分贝为001或100、或111时,F为1,因此该真值表的最小项表达式为
F = A ‾ B ‾ C + A B ‾ C ‾ + A B C = ∑ m ( 1 , 4 , 7 ) F=\overline{A}\overline{B}C+A\overline{B}\overline{C}+ABC=\sum{m(1,4,7)} F=ABC+ABC+ABC=m(1,4,7)

2、*最大项

n个变量的最大项是n个变量的”或项“,其中每一个变量都以原变量或反变量的形式出现一次

2个变量A,B最大项:
A + B , A + B ‾ , A ‾ + B , A ‾ + B ‾ A+B,A+\overline{B},\overline{A}+B,\overline{A}+\overline{B} A+B,A+B,A+B,A+B
3个变量A,B,C 最大项:
A + B + C , A + B + C ‾ , A + B ‾ + C , A + B ‾ + C ‾ , A ‾ + B + C , A ‾ + B + C ‾ , A ‾ + B ‾ + C , A ‾ + B ‾ + C ‾ A+B+C,A+B+\overline{C},A+\overline{B}+C,A+\overline{B}+\overline{C},\overline{A}+B+C,\overline{A}+B+\overline{C},\overline{A}+\overline{B}+C,\overline{A}+\overline{B}+\overline{C} A+B+C,A+B+C,A+B+C,A+B+C,A+B+C,A+B+C,A+B+CA+B+C
最大项真值表

序号ABCM0 A+B+CM1 A+B+C’M2 A+B’+CM3 A+B’+C’M4 A’+B+CM5 A’+B+C’M6 A’+B’+CM7 A’+B’+C’
000001111111
100110111111
201011011111
301111101111
410011110111
510111111011
611011111101
711111111110

任何一个最大项,只有一组变量取值使它为0,而变量的其余取值均使它为1

最大项的性质:

  1. 在同一组取值下,n变量的全部最大项的逻辑乘恒为0,即
    ∏ i = 0 2 n − 1 M i = 0 \prod_{i=0}^{2^n-1}M_i=0 i=02n1Mi=0

  2. 在同一组取值下,n变量的任意两个不同的最大项的和为1,即
    M i + M j = 1 ( i ≠ j ) M_i+M_j=1(i≠j) Mi+Mj=1(i=j)

  3. n变量的每个最大项有n个相邻项

  4. 最小项与最大项之间的关系:
    m i ‾ = M i , M i ‾ = m i \overline{m_i} = M_i,\overline{M_i}=m_i mi=Mi,Mi=mi

标准或与式:

在一个或与式中,如果所有的”或项“均为最大项,则称这种表达式为最大项表达式,或称为标准或于式

例:根据真值表写出函数表达式

A B CFF’
00010
00110
01001
01110
10010
10110
11001
11101

当A、B、C取值为000、001、011、100、101时,F为1,F‘为0;

当A、B、C取值为010、110、111时,F为0,F’为1

将真值表中使函数值为0的项相与
F = ∑ m ( 0 , 1 , 3 , 4 , 5 ) F ‾ = ∑ m ( 2 , 6 , 7 ) F = ∏ M ( 2 , 6 , 7 ) = M 2 ⋅ M 6 ⋅ M 7 F=\sum{m(0,1,3,4,5)}\\ \overline{F}=\sum{m(2,6,7)}\\ F=\prod{M(2,6,7)}=M_2·M_6·M_7 F=m(0,1,3,4,5)F=m(2,6,7)F=M(2,6,7)=M2M6M7
先求出该函数的反函数,并写出最小项表达式,然后将和求反,利用mi和Mi的互补关系便得到最大项表达式


五、逻辑函数化简方法

逻辑函数表达式越简单,所用的逻辑门和连接线越少,实现电路的成本越低,方法就越简单。

逻辑函数化简通常是指将逻辑函数化简为最简与或式或者最简或与式

主要化简方法:

  1. 公式化简法、利用基本公式,消去逻辑函数表达式中多余的乘积项和多余因子
  2. 卡诺图化简法

1、卡诺图的构成

n变量卡诺图:首先画出2^n个小方格,把那个将输入变量按行、列分为两组表示在方格图的左上角,变量的取值按格雷码排列。每个小方格对应着一个最小项,并且要求将逻辑上的相邻最小项让它在几何位置上也相邻地排列起来

特点:

  1. n变量的卡诺图有2n个方格,对应表示2n个最小项。每当变量数增加一个,卡诺图的方格数就扩大一倍
  2. 几何相邻:一是相接,即紧挨着;二是相对,即任意一行或一列的两头;三是相重(5变量),即对着起来位置重合逻辑相邻:是指除了一个变量不同其余变量都相同的两个“与项”。

二变量卡诺图:

A\B01
0m0m1
1m2m3

三变量卡诺图:

A\BC00011110
0m0m1m3m2
1m4m5m7m6

四变量卡诺图:

AB\CD00011110
00m0m1m3m2
01m4m5m7m6
11m12m13m15m14
10m8m9m11m10

画卡诺图的几种方法:

  1. 将构成逻辑函数的最小项在卡诺图上相应的方格中填1,其余方格填0(或不填),则可以得到该函数的卡诺图,任何一个逻辑函数都等于其卡诺图上填1的那些最小项之和
  2. 将一般与或式中每个与项在卡诺图上所覆盖的最小项都填1,其余填0(或不填),就可以得到该函数的卡诺图
  3. 将构成逻辑函数的最大项在卡诺图相应的方格中填0,其余方格填1(或不填)即可。也就是说,任何一个逻辑函数都等于其卡诺图上填0的那些最大项之与
  4. 将一般或与式中每个或项在卡诺图上所覆盖的最大项处都填0,其余的填1(或不填)

2、卡诺图的合并方法

  1. 在卡诺图中,凡是集合位置相邻的最小项均可以合并
  2. 两个相邻最小项合并为一项,消去一个互补变量
  3. 在卡诺图上该合并圈称为卡诺圈,简称k-圈

3、卡诺图的合并要求

  1. 必须按照相邻规则画卡诺圈(几何位置相邻包括:相邻;相对;相重)
  2. 2m个方格合并,消去m个变量。合并圈越大,消去的变量数越多
  3. 任何一个合并圈(即卡诺圈)所含的方格数为2^i

4、卡诺图中的无关项

逻辑问题分为完全描述非完全描述两种

如果对于输入变量的每一组取值,逻辑函数都有确定的值,则称这类函数为完全描述逻辑函数;

如果对于输入变量的某些取值组合逻辑函数值不确定,即函数值可以为0,也可以为1(通常将函数值记为x),那么这类函数称为非完全描述的逻辑函数。

无关项发生的情况:

  1. 由于某种条件的限制(或约束)使得输入变量的某些组合不可能出现,因而在这些取值下对应的函数值是“无关紧要的”,它可以为1,也可以为0.
  2. 某些输入变量取值所产生的输出并不影响整个系统的功能,因此可以不必考虑其输出是0还是1

表示方法:

  1. 在真值表或k图中填x,表示函数值为0或1均可
  2. 在逻辑表达式中用约束条件来表示,约束项之和恒为0。

例:设计一个开关控制灯亮的逻辑电路。分别用变量A、B、C、表示3个开关,用F表示灯亮与否;设开关闭合为1、断开为0,灯亮为1、灯灭为0,如果不允许有两个和两个以后三个的开关同时闭合,试写出灯亮的逻辑函数表达式

解:由于不允许有两个和两个以上的开关同时闭合,所以A、B、C三个变量的取值不能出现011、101、110、111中的任何一种

A B CF
0 0 00
0 0 11
0 1 01
0 1 1x
1 0 01
1 0 1x
1 1 0x
1 1 1x

在这里插入图片描述

F = ∑ m ( 1 , 2 , 4 ) + ∑ d ( 3 , 5 , 6 , 7 ) F = ∏ M ( 0 ) ⋅ ∏ d ( 3 , 5 , 6 , 7 ) F=\sum{m(1,2,4)}+\sum{d(3,5,6,7)}\\ F=\prod{M(0)}·\prod{d(3,5,6,7)} F=m(1,2,4)+d(3,5,6,7)F=M(0)d(3,5,6,7)

在这里插入图片描述

F = A+B+C

在非完全描述逻辑函数中,由于在无关项的相应取值下,函数值随意取成0或1都不影响函数原有的功能,因此可以充分利用这些无关项来化简逻辑函数,即采用卡诺图化简函数时,可以利用x来扩大卡诺圈。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值