只是读论文从英文到中文的这个切换的过程,如果不能读原文,就理解不了人家表意的重点,尤其语言并不是代码,其重点常在于顺序或者停顿或者强调处,由于不同语言的习惯,阅读翻译出的英文,很可能导致对语言的重点的理解产生偏差,那么在这个过程中就应该有意识地对所阅读内容的重要性做重新的排序,也就是显式地提炼出自己认为重要的部分,注意,这仍然是你读到的观点,所以这也是为什么要结合代码去理解的原因;当然如果你是带着问题,或者已经对类似的现象有了一些感悟的情况下,这个提炼的过程对你来说,就会更加的容易,也就是快捷,这也是通常认为的,你需要重复一件事,你才能提升做成这件事的速度,这个回路,是你不断优化而加强的,因为重复通常会导致烦躁,当人们无法忍受的时候,就会试着去改变了,那么创新就是在这样的地方发生的,比如你擦拭一个很油腻的杆子,出力气的人会用物理的方法,使劲用摩擦力来解决问题,这样是不用太多其他的投入,只要出力,结果就是杆子可能擦得很干净,但是抹布上沾染了很多油腻,然后再去洗抹布上的油腻;而如果能认识到油腻的形成原因,对症下药,直接用相应的化学溶剂,来洗这个杆子,那?去污?就不用那么费力,而且,同时也洗了抹布,举这个例子的原因,重点是要说明什么是创新,不同的人有不同的做法,但都是在发挥自己所长的基础上,能学会扬长避短,自然能解决问题,注重结果是会有结果,但是不是就只有结果呢,很有可能,所以最终你想要什么,只要你想清楚就行;
重点是,要有意识地感知到域切换产生的偏差,然后用更细粒度地具体的实现方案去验证和补全模糊的部分,也就是类似数形结合地方式:文章和代码和图结合;起码人自身的学习要运用到多模态的技术,自身的学习要符合深度学习的思想,不断重复和迭代;
为何要写论文,为何要做预测,可以看作是输出倒逼输入,也可以看作换位思考,就像如果你理解不了一本书,但是如果它变成了一种提问的形式,让你来写这本书,你会怎么表达自己的观点,当你写得不够简洁明了的时候,你就会发现为何它要那样规定和表示了,也就是,写文章要试着用自己的方式去写,然后发现自己的方式确实不如那种长期优化的过的方式,比如不如八股文容易读懂,或者让更多的人看懂,所以你会自然遵循这种方式,因为这是一种更节省时间的方式,很多人是不自觉地就选择了这种方式,凭着一种还能怎样的信念,但是还能怎样就是也就那样了;关键是,在不需要优化的步骤上节省下来的时间精力可以更多地用在还没有优化的地方上,这不是自欺欺人,你没必要发明一整套都是创新的方案,就像NBDT也只是在神经网络的最后一层做了创新,所以这就是为何参照别人的做法很必要;
如果很多东西已经有了现成的方案,完全没必要自己再来搞一套,你做得会比人家做得更高性能,还是更便宜,还是什么,没有多少事是要重头再来的;
其实就是写着写着就理解了,这就是笔记的意义,类似一个memorybank ,虽然论文是最终产品,但是没有这个中间产物,很难得到最终的结果,如果把它看作是一个附带的东西,为了平时更专注,为了自己能理解,那么写下这些比如对某个公式的理解,也是很有必要的,即使全部都是中文的表示,你想过对于一个公式,如果我们只是读作k a b这些字母,那么仍然停留在数学借用英文标记概念的层面上,而并未理解这些公式,如果我们能用中文,用自己的表述把这些问题讲清楚,那我们自然就理解了,所以有时候,论文不是一个结果,反倒是一个中间过程,因为写出来了,所以才理解了,才明白自己要做什么主题,这也是主题为何会变更的原因,因为不一定一开始就能确立目标,一开始确立的也不一定以后就不会变,所以在写的过程中逐步确立了对这个问题的理解,就像是深度学习模型在学的时候逐步提升了对这个目标的预测概率;