Pytorch聊天机器人

Pytorch聊天机器人

看pytorch的中文教程,里面有一个英语的聊天机器人教程的例子。其中运用了encode decode 加Global attention进行生成。

自己试着根据这个例子写了一个中文的,添加了Dataset, DataLoader处理读取数据更方便,也删减了一些处理数据的代码,更突出其中的网络结构。以此让自己更详细的理解一下其中的网络结构及注意力。同时把代码分为两部分,一部分训练,一部分聊天推理。

代码如下
训练代码

import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import os
import itertools
import json
from tqdm import tqdm
import sys

# Default word tokens
PAD_token = 0  # Used for padding short sentences
SOS_token = 1  # Start-of-sentence token
EOS_token = 2  # End-of-sentence token
UNK_token = 3


class Voc:
    def __init__(self):
        self.word2index = {}
        self.word2count = {}
        self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS", UNK_token: "UNK"}
        self.num_words = 4  # Count SOS, EOS, PAD

    def addSentence(self, sentence):
        word_list = list(sentence)
        for word in word_list:
            self.addWord(word)

    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.num_words
            self.word2count[word] = 1
            self.index2word[self.num_words] = word
            self.num_words += 1
        else:
            self.word2count[word] += 1

    def get_word_index(self, word):
        return self.word2index.get(word, 3)

读取文件的类型为json
内容格式应为

[
[
"speaker1*****************",
"speaker2*****************"
],
[
"speaker1*****************",
"speaker2*****************"
]
]
def loadPrepareData(datafile):
    print("准备读取文件并建立字典")
    with open(datafile, 'r', encoding='utf8')as f:
        pairs = json.load(f)
    # Read the file and split into lines
    voc = Voc()
    print("共读取{!s}对句子".format(len(pairs)))
    print("开始建立字典...")
    for pair in pairs:
        voc.addSentence(pair[0])
        voc.addSentence(pair[1])
    print("字典大小为{}字".format(voc.num_words))
    return voc, pairs


class PairsDataset(Dataset):

    def __init__(self, data, vocab):
        self.data = data
        self.vocab = vocab
        self.seq_len = len(data)

    def __len__(self):
        return self.seq_len

    def __getitem__(self, index):
        return self.data[index]


def indexesFromSentence(voc, sentence):
    """将句子转换为索引值"""
    return [voc.get_word_index(word) for word in sentence.split(' ')] + [EOS_token]


# zip 对数据进行合并了,相当于行列转置了
def zeroPadding(l, fillvalue=PAD_token):
    """将句子合并转置"""
    return list(itertools.zip_longest(*l, fillvalue=fillvalue))


# 记录 PAD_token的位置为0, 其他的为1
def binaryMatrix(l, value=PAD_token):
    """记录 PAD_token的位置为0, 其他的为1"""
    m = []
    for i, seq in enumerate(l):
        m.append([])
        for token in seq:
            if token == PAD_token:
                m[i].append(0)
            else:
                m[i].append(1)
    return m


def inputVar(l, voc):
    """返回填充前(加入结束index EOS_token做标记)的长度 和 填充后的输入序列张量"""
    indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
    lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
    padList = zeroPadding(indexes_batch)
    padVar = torch.LongTensor(padList)
    return padVar, lengths


def outputVar(l, voc):
    """返回填充前(加入结束index EOS_token做标记)最长的一个长度 和 填充后的输出序列张量, 和 填充后的标记 mask"""
    indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
    max_target_len = max([len(indexes) for indexes in indexes_batch])
    padList = zeroPadding(indexes_batch)
    mask = binaryMatrix(padList)
    mask = torch.ByteTensor(mask).bool()
    padVar = torch.LongTensor(padList)
    return padVar, mask, max_target_len


def batch2TrainData(voc, pair_batch):
    """
    arg:
        inp: input_index, shape: max_input_length * batch_size
        lengths: input_length, shape:1 * batch_size
        output: output_index, shape: max_output_length * batch_size
        mask: bool PAD_token的位置为0,其他的为1, shape: max_output_length * batch_size
        max_target_len: max_output_length
    """
    pair_batch.sort(key=lambda x: len(" ".join(list(x[0].replace(" ", ""))).split(" ")), reverse=True)
    input_batch, output_batch = [], []
    for pair in pair_batch:
        input_batch.append(" ".join(list(pair[0].replace(" ", ""))))
        output_batch.append(" ".join(list(pair[1].replace(" ", ""))))
    inp, lengths = inputVar(input_batch, voc)
    output, mask, max_target_len = outputVar(output_batch, voc)
    return inp, lengths, output, mask, max_target_len


class EncoderRNN(nn.Module):
    def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
        super(EncoderRNN, self).__init__()
        self.n_layers = n_layers
        self.hidden_size = hidden_size
        self.embedding = embedding

        # Initialize GRU; the input_size and hidden_size params are both set to 'hidden_size'
        #   because our input size is a word embedding with number of features == hidden_size
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
                          dropout=(0 if n_layers == 1 else dropout), bidirectional=True)

    def forward(self, input_seq, input_lengths, hidden=None):
        # Convert word indexes to embeddings
        embedded = self.embedding(input_seq)
        # 按照长度降序排列
        packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
        # Forward pass through GRU
        outputs, hidden = self.gru(packed, hidden)
        # Unpack padding
        outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs)
        # Sum bidirectional GRU outputs
        outputs = outputs[:, :, :self.hidden_size] + outputs[:, :, self.hidden_size:]
        # Return output and final hidden state
        return outputs, hidden


# Luong attention layer
class Attn(torch.nn.Module):
    def __init__(self, hidden_size):
        super(Attn, self).__init__()
        self.hidden_size = hidden_size

    def forward(self, hidden, encoder_outputs):
        # Calculate the attention weights (energies) based on the given method
        attn_energies = torch.sum(hidden * encoder_outputs, dim=2)

        # Transpose max_length and batch_size dimensions
        attn_energies = attn_energies.t()

        # Return the softmax normalized probability scores (with added dimension)
        return F.softmax(attn_energies, dim=1).unsqueeze(1)


class LuongAttnDecoderRNN(nn.Module):
    def __init__(self, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
        super(LuongAttnDecoderRNN, self).__init__()

        # Keep for reference
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.n_layers = n_layers
        self.dropout = dropout

        # Define layers
        self.embedding = embedding
        self.embedding_dropout = nn.Dropout(dropout)
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
        self.concat = nn.Linear(hidden_size * 2, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)

        self.attn = Attn(hidden_size)

    def forward(self, input_step, last_hidden, encoder_outputs):
        # Note: we run this one step (word) at a time
        # Get embedding of current input word
        embedded = self.embedding(input_step)
        embedded = self.embedding_dropout(embedded)
        # Forward through unidirectional GRU
        rnn_output, hidden = self.gru(embedded, last_hidden)
        # Calculate attention weights from the current GRU output
        attn_weights = self.attn(rnn_output, encoder_outputs)
        # Multiply attention weights to encoder outputs to get new "weighted sum" context vector
        context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
        # Concatenate weighted context vector and GRU output using Luong eq. 5
        rnn_output = rnn_output.squeeze(0)
        context = context.squeeze(1)
        concat_input = torch.cat((rnn_output, context), 1)
        concat_output = torch.tanh(self.concat(concat_input))
        # Predict next word using Luong eq. 6
        output = self.out(concat_output)
        output = F.softmax(output, dim=1)
        # Return output and final hidden state
        return output, hidden


def maskNLLLoss(inp, target, mask):
    nTotal = mask.sum()
    crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
    loss = crossEntropy.masked_select(mask).mean()
    loss = loss.to(device)
    return loss, nTotal.item()


def train():
    print_losses = []
    n_totals = 0
    pbar = tqdm(train_loader)
    for pairs in pbar:
        pairs = list(zip(*pairs))
        encoder_optimizer.zero_grad()
        decoder_optimizer.zero_grad()
        input_variable, lengths, target_variable, mask, max_target_len = batch2TrainData(voc, pairs)
        # Set device options
        input_variable = input_variable.to(device)
        lengths = lengths.to(device)
        target_variable = target_variable.to(device)
        mask = mask.to(device)


        # Forward pass through encoder
        encoder_outputs, encoder_hidden = encoder(input_variable, lengths)

        # Create initial decoder input (start with SOS tokens for each sentence)
        decoder_input = torch.LongTensor([[SOS_token for _ in range(batch_size)]])
        decoder_input = decoder_input.to(device)

        # Set initial decoder hidden state to the encoder's final hidden state
        decoder_hidden = encoder_hidden[:decoder.n_layers]

        # Initialize variables
        loss = 0

        # Forward batch of sequences through decoder one time step at a time

        for t in range(max_target_len):
            decoder_output, decoder_hidden = decoder(
                decoder_input, decoder_hidden, encoder_outputs
            )
            # Teacher forcing: next input is current target
            decoder_input = target_variable[t].view(1, -1)
            # Calculate and accumulate loss
            # mask_loss平均每个字符的loss, nTotal总共字符数
            mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
            loss += mask_loss
            # 一个batch_size的总计损失
            print_losses.append(mask_loss.item() * nTotal)
            n_totals += nTotal

        # Perform backpropatation
        loss.backward()

        # Clip gradients: gradients are modified in place
        _ = torch.nn.utils.clip_grad_norm_(encoder.parameters(), clip)
        _ = torch.nn.utils.clip_grad_norm_(decoder.parameters(), clip)

        # Adjust model weights
        encoder_optimizer.step()
        decoder_optimizer.step()
        pbar.set_description(f'epoch:{epoch} loss:{sum(print_losses) / n_totals:.3f}')

    return sum(print_losses) / n_totals


if __name__ == '__main__':
    USE_CUDA = False
    device = torch.device("cuda" if USE_CUDA else "cpu")
    datafile = "./content.json"
    voc, pairs = loadPrepareData(datafile)
    hidden_size = 500
    encoder_n_layers = 1
    decoder_n_layers = 1
    dropout = 0.1
    batch_size = 2

    embedding = nn.Embedding(voc.num_words, hidden_size)

    encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
    decoder = LuongAttnDecoderRNN(embedding, hidden_size, voc.num_words, decoder_n_layers, dropout)

    encoder = encoder.to(device)
    decoder = decoder.to(device)


    # Configure training/optimization
    nums_epoch = 30
    clip = 50.0
    learning_rate = 0.0001
    decoder_learning_ratio = 5.0

    # Ensure dropout layers are in train mode
    encoder.train()
    decoder.train()

    # Initialize optimizers

    encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate * decoder_learning_ratio)
    train_dataset = PairsDataset(pairs, voc)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)

    # Run training iterations
    print("开始训练!")
    for epoch in range(nums_epoch):

        loss = train()

        torch.save({
            'epoch': epoch,
            'en': encoder.state_dict(),
            'de': decoder.state_dict(),
            'en_opt': encoder_optimizer.state_dict(),
            'de_opt': decoder_optimizer.state_dict(),
            'loss': loss,
            'voc_dict': voc.__dict__,
            'embedding': embedding.state_dict()
        }, os.path.join('./', '{}_loss{:.3f}_{}.tar'.format(epoch, loss, 'checkpoint')))

聊天推理代码

import torch
import torch.nn as nn
import torch.nn.functional as F

# Default word tokens
PAD_token = 0  # Used for padding short sentences
SOS_token = 1  # Start-of-sentence token
EOS_token = 2  # End-of-sentence token
UNK_token = 3

class EncoderRNN(nn.Module):
    def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
        super(EncoderRNN, self).__init__()
        self.n_layers = n_layers
        self.hidden_size = hidden_size
        self.embedding = embedding

        # Initialize GRU; the input_size and hidden_size params are both set to 'hidden_size'
        #   because our input size is a word embedding with number of features == hidden_size
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
                          dropout=(0 if n_layers == 1 else dropout), bidirectional=True)

    def forward(self, input_seq, input_lengths, hidden=None):
        # Convert word indexes to embeddings
        embedded = self.embedding(input_seq)
        # 按照长度降序排列
        packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
        # Forward pass through GRU
        outputs, hidden = self.gru(packed, hidden)
        # Unpack padding
        outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs)
        # Sum bidirectional GRU outputs
        outputs = outputs[:, :, :self.hidden_size] + outputs[:, :, self.hidden_size:]
        # Return output and final hidden state
        return outputs, hidden


# Luong attention layer
class Attn(torch.nn.Module):
    def __init__(self, hidden_size):
        super(Attn, self).__init__()
        self.hidden_size = hidden_size

    def forward(self, hidden, encoder_outputs):
        # Calculate the attention weights (energies) based on the given method
        attn_energies = torch.sum(hidden * encoder_outputs, dim=2)

        # Transpose max_length and batch_size dimensions
        attn_energies = attn_energies.t()

        # Return the softmax normalized probability scores (with added dimension)
        return F.softmax(attn_energies, dim=1).unsqueeze(1)


class LuongAttnDecoderRNN(nn.Module):
    def __init__(self, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
        super(LuongAttnDecoderRNN, self).__init__()

        # Keep for reference
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.n_layers = n_layers
        self.dropout = dropout

        # Define layers
        self.embedding = embedding
        self.embedding_dropout = nn.Dropout(dropout)
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
        self.concat = nn.Linear(hidden_size * 2, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)

        self.attn = Attn(hidden_size)

    def forward(self, input_step, last_hidden, encoder_outputs):
        # Note: we run this one step (word) at a time
        # Get embedding of current input word
        embedded = self.embedding(input_step)
        embedded = self.embedding_dropout(embedded)
        # Forward through unidirectional GRU
        rnn_output, hidden = self.gru(embedded, last_hidden)
        # Calculate attention weights from the current GRU output
        attn_weights = self.attn(rnn_output, encoder_outputs)
        # Multiply attention weights to encoder outputs to get new "weighted sum" context vector
        context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
        # Concatenate weighted context vector and GRU output using Luong eq. 5
        rnn_output = rnn_output.squeeze(0)
        context = context.squeeze(1)
        concat_input = torch.cat((rnn_output, context), 1)
        concat_output = torch.tanh(self.concat(concat_input))
        # Predict next word using Luong eq. 6
        output = self.out(concat_output)
        output = F.softmax(output, dim=1)
        # Return output and final hidden state
        return output, hidden


class GreedySearchDecoder(nn.Module):
    def __init__(self, encoder, decoder):
        super(GreedySearchDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, input_seq, input_length, max_length):
        # Forward input through encoder model
        encoder_outputs, encoder_hidden = self.encoder(input_seq, input_length)
        # Prepare encoder's final hidden layer to be first hidden input to the decoder
        decoder_hidden = encoder_hidden[:decoder.n_layers]
        # Initialize decoder input with SOS_token
        decoder_input = torch.ones(1, 1, device=device, dtype=torch.long) * SOS_token
        # Initialize tensors to append decoded words to
        all_tokens = torch.zeros([0], device=device, dtype=torch.long)
        all_scores = torch.zeros([0], device=device)
        # Iteratively decode one word token at a time
        for _ in range(max_length):
            # Forward pass through decoder
            decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs)
            # Obtain most likely word token and its softmax score
            decoder_scores, decoder_input = torch.max(decoder_output, dim=1)
            # Record token and score
            all_tokens = torch.cat((all_tokens, decoder_input), dim=0)
            all_scores = torch.cat((all_scores, decoder_scores), dim=0)
            # Prepare current token to be next decoder input (add a dimension)
            decoder_input = torch.unsqueeze(decoder_input, 0)
        # Return collections of word tokens and scores
        return all_tokens, all_scores


def indexesFromSentence(voc, sentence):
    """将句子转换为索引值"""
    return [voc.get_word_index(word) for word in sentence] + [EOS_token]


def evaluate(searcher, voc, sentence, max_length=300):
    ### Format input sentence as a batch
    # words -> indexes
    indexes_batch = [indexesFromSentence(voc, sentence)]
    # Create lengths tensor
    lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
    # Transpose dimensions of batch to match models' expectations
    input_batch = torch.LongTensor(indexes_batch).transpose(0, 1)
    # Use appropriate device
    input_batch = input_batch.to(device)
    lengths = lengths.to(device)
    # Decode sentence with searcher
    tokens, scores = searcher(input_batch, lengths, max_length)
    # indexes -> words
    decoded_words = [voc.index2word[token.item()] for token in tokens]
    return decoded_words


def evaluateInput(searcher, voc):
    while True:
        try:
            # Get input sentence
            input_sentence = input('请输入:')
            # Check if it is quit case
            if input_sentence == 'q' or input_sentence == 'quit': break
            # Evaluate sentence
            output_words = evaluate(searcher, voc, input_sentence)
            # Format and print response sentence
            output_words[:] = [x for x in output_words if not (x == 'EOS' or x == 'PAD')]
            print('机器人:', ''.join(output_words))

        except KeyError:
            print("Error: Encountered unknown word.")


class Voc:
    def __init__(self):
        self.word2index = {}
        self.word2count = {}
        self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS", UNK_token: "UNK"}
        self.num_words = 4  # Count SOS, EOS, PAD

    def addSentence(self, sentence):
        word_list = list(sentence)
        for word in word_list:
            self.addWord(word)

    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.num_words
            self.word2count[word] = 1
            self.index2word[self.num_words] = word
            self.num_words += 1
        else:
            self.word2count[word] += 1

    def get_word_index(self, word):
        return self.word2index.get(word, 3)


if __name__ == '__main__':
    USE_CUDA = False
    device = torch.device("cuda" if USE_CUDA else "cpu")
    loadFilename = './9checkpoint.tar'
    checkpoint = torch.load(loadFilename)

    hidden_size = 500
    encoder_n_layers = 1
    decoder_n_layers = 1
    dropout = 0.1

    voc = Voc()
    voc.__dict__ = checkpoint['voc_dict']

    embedding = nn.Embedding(voc.num_words, hidden_size)
    embedding.load_state_dict(checkpoint['embedding'])

    encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
    decoder = LuongAttnDecoderRNN(embedding, hidden_size, voc.num_words, decoder_n_layers, dropout)

    encoder.load_state_dict(checkpoint['en'])
    decoder.load_state_dict(checkpoint['de'])

    encoder = encoder.to(device)
    decoder = decoder.to(device)

    # Set dropout layers to eval mode
    encoder.eval()
    decoder.eval()

    # Initialize search module
    searcher = GreedySearchDecoder(encoder, decoder)

    # Begin chatting (uncomment and run the following line to begin)
    evaluateInput(searcher, voc)
  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值