Pandas 面板Panel

本文介绍了Pandas库中的Panel数据结构,包括其3个轴的含义、构造函数及实例,展示了如何通过ndarrays、DataFrames的字典和读取数据创建Panel。涵盖了从Panel构造到实际操作的全面内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Panel介绍

        Pandas 面板(Panel)是3维数据的存储结构,相当于一个存储 DataFrame 的字典,有3个轴(axis),分别给出描述涉及面板数据的操作的一些语义,具体如下;

  • items - axis 0,每个项目对应于内部包含的数据帧(DataFrame)。
  • major_axis - axis 1,它是每个数据帧(DataFrame)的索引(行)。
  • minor_axis - axis 2,它是每个数据帧(DataFrame)的列。

*Pandas 0.25 版本后, Panel 结构已经被废弃。

二、构造函数

pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)
    """
    
    Args:
        data: 数据采取各种形式,如:ndarray,series,map,lists,dict,DataFrame
        items: axis=0
        major_axis: axis=1
        minor_axis: axis=2
        dtype: 每列的数据类型
        copy: 复制数据,默认 - false

    Returns:

    """

三、面板创建

1、ndarrays创建

import pandas as pd
import numpy as np

data = np.random.rand(2,4,5)
p = pd.Panel(data)
print p


2、DataFrames的dict创建

import pandas as pd
import numpy as np
data = {'Item1' :  DataFrame1),
   'Item2' : DataFrame2}
p = pd.Panel(data)
print(p)

3、Panel中读取数据

import pandas as pd
import numpy as np
data = {'Item1' :  DataFrame1),
   'Item2' : DataFrame2}
p = pd.Panel(data)
print(p["Item1"])

4、Major_axis维数据

print(p.major_xs(1))

四、参考

Pandas 面板(Panel)|极客教程

Pandas Panel三维数据结构

### 关于Pandas Panel数据结构 #### 定义与特性 Pandas Panel 是一种用于处理三维数据的结构,提供类似于 DataFrame 的接口来管理三维数据集[^2]。这种数据结构允许通过三个轴进行索引:`items (axis=0)` 表示不同的成员或个体;`major_axis (axis=1)` 对应每个成员的时间序列或其他主要维度;而 `minor_axis (axis=2)` 则定义了各个时间点上的特征列表。 尽管如此,在较新的版本中,由于其性能表现不如预期以及灵活性较低的原因,官方已经宣布不再推荐使用 Panel 结构,并鼓励开发者转向其他替代方案如 MultiIndex 或者更高阶的数据框组合形式来进行复杂的多维数据分析工作[^3]。 #### 创建Panel实例 下面是一个简单的例子展示如何创建并访问一个 Panel 实例: ```python import numpy as np import pandas as pd data = { 'ItemA': pd.DataFrame(np.random.randn(4, 3)), 'ItemB': pd.DataFrame(np.random.randn(4, 3)) } panel = pd.Panel(data) print(panel['ItemA']) # 访问特定 item 下面的数据帧 ``` 请注意上述代码仅适用于旧版 Pandas 版本,在最新稳定发行版里可能无法正常运行,因为 Panel 类型已经被移除。 #### 替代方案介绍 对于那些希望继续从事高维数据分析工作的用户来说,可以考虑采用带有层次化索引(Hierarchical Indexing)功能的 DataFrames 来代替传统的 Panels。这种方式不仅保持了原有 API 设计的一致性和简洁性,同时也提高了计算效率和支持更多样化的应用场景[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

**星光*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值