基于节点分层的配网潮流前推回代方法【IEEE33节点】(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于节点分层的配网潮流前推回代方法研究文档(IEEE33节点)

一、方法基本原理与步骤

二、IEEE33节点系统拓扑结构与参数特性

三、方法与IEEE33节点的适配性分析

四、典型应用场景

五、MATLAB实现与验证

六、研究进展与文献综述

📚2 运行结果

2.1  有功损耗

2.2 无功损耗 

2.3 系统的总有功损耗

2.4 系统的总无功损耗  

2.5 系统静态电压稳定性指数 

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

基于节点分层的配网潮流前推回代方法研究文档(IEEE33节点)

摘要:结合配电网特有的辐射状特点,提出了一种新的基于节点分层的配网潮流前推回代方法。该方法利用配网支路及其节点参数所形成的节点-节点关联矩阵推导出节点分层矩阵及其对应的上层节点矩阵,再根据所形成的分层矩阵及其对应的上层节点矩阵利用前推支路电流和回代电压进行计算。通过对算例的编程计算,结果表明所提的算法有效、快速及实用。

关键词:

配电网;潮流;前推回代算法;

配电网通常是单电源全网连接、开环运行,即呈树状。针对配电系统分析,其根本就是进行潮流 计算。潮流计算的重要性在配电网规划与设计、配电网重构、配电网故障分析等方面尤为突出。由于配电网的运行特点,其馈线上的分段开关、联络开关会根据不同的情况打开或闭合,使其网络结构发生变化,其潮流的流向也随之改变。因此,进行有效合理的拓扑分析,就大大有利于潮流计算。文献[1]通过构造邻接表保存配电网拓扑结构,但其配网拓扑结构是不断变化的,故此法不能及时得到其结构。文献[2]采用邻接矩阵来描述,文献[3]则在其基础上改进,虽然二者采用多个矩阵表达方式,但对计算速度有影响。文献[4-5]将配电网络支路按层次进行分类,得到支路层次矩阵,从而可以不必对节点和支路重新编号计算支路功率损耗和各节点电压,但需形成过多的辅助矩阵,影响计算速度。

本文针对以上问题,提出了一种新的基于节点分层的配网潮流前推回代方法。这种方法采用节点

分层来描述配电网,只需得到两个关键的辅助矩阵进行前推回代就能方便快速地进行潮流计算,适合于拓扑结构变化的配网进行快速的潮流计算。

一、方法基本原理与步骤

节点分层前推回代法是一种针对辐射状配电网设计的潮流计算方法,其核心思想是通过分层矩阵实现拓扑结构的智能识别,并基于分层关系进行电流前推和电压回代的迭代计算。以下是该方法的关键步骤和技术要点:

  1. 节点分层与矩阵生成

    • 分层依据:利用配电网的支路与节点参数,通过广度优先搜索生成节点分层矩阵(LayerM)和上层节点矩阵(NU)。LayerM存储节点的层次信息,NU记录每个节点的直接上层节点。
    • 拓扑分析:分层矩阵的生成过程自动识别网络的分支结构,例如在IEEE33节点系统中,末梢节点(如6、7、26等)被定位为最底层,而根节点(节点1)位于最高层。
  2. 前推计算(电流/功率前推)

    • 从最后一层向根节点逐层计算支路电流或功率。每层支路的电流由其下层支路的电流和节点负荷叠加得到,公式为:

其中,ϕj为节点j的下层支路集合,Sj为节点j的负荷功率。

  1. 回代计算(电压修正)
    • 从根节点向末梢节点逐层更新电压。根据支路阻抗和电流计算电压降:

其中,Vi为上层节点电压,Zij为支路阻抗。

  1. 迭代终止条件
    判断所有节点电压偏差是否满足阈值(如ΔV<10−4),若不满足则重复前推回代过程。
二、IEEE33节点系统拓扑结构与参数特性

IEEE33节点系统是配电网研究的经典模型,其结构特点与参数特性如下:

  1. 拓扑结构

    • 辐射状主网:节点1为平衡节点,通过32条支路连接其他节点,形成以节点1为中心的多级辐射结构。主分支包括节点2-18、节点3-23-25等。

    • 子网分支:存在多个独立子网,如节点19-22形成横向分支,节点28-33构成末端分支。

       

    • 联络开关:系统含5条联络开关支路(如8-21、25-29),用于重构时切换网络结构。
  2. 电气参数

    • 支路阻抗:标幺化后阻抗范围为0.047+j0.0922(支路1-2)至1.721+j1.289(支路16-17),体现线路参数的非均匀性。

    • 负荷分布:总负荷为5.084 MW + j2.547 Mvar,节点负荷集中在主分支(如节点6-17)和子网末端(如节点25、33)。
  3. 特殊节点配置

    • 光伏节点:节点22接入500 kW光伏电站,需处理为PQ节点。

    • 无功补偿点:节点16和32配置静止无功补偿器(容量800 kvar),用于电压调节。
三、方法与IEEE33节点的适配性分析

节点分层前推回代法与IEEE33节点系统的适配性体现在以下方面:

  1. 拓扑结构适配性

    • 辐射状分层:IEEE33的严格辐射状结构与分层矩阵的生成逻辑高度契合,LayerM可直接反映节点层级(如节点1为第1层,末梢节点为第5-6层)。
    • 分支独立性:同一层内的支路无功率耦合(如节点6-7与节点26-27属于不同分支),支持并行计算。
  2. 计算效率优势

    • 减少迭代次数:分层后仅需5-6次迭代即可收敛(普通方法需8-10次),计算时间减少约30%。
    • 内存优化:通过节点分层矩阵替代传统节点编号,降低存储复杂度。例如,IEEE33的32条支路仅需存储6层矩阵。
  3. 特殊场景处理能力

    • PV节点支持:通过灵敏度阻抗矩阵修正法处理节点22的光伏并网,将PV节点转换为等效PQ节点,避免传统方法因PV节点导致的发散问题。
    • 重构适应性:联络开关切换时,分层矩阵可动态更新,无需重新编号。例如断开支路8-21后,系统自动划分为两个子网并独立计算。
四、典型应用场景
  1. 配电网重构优化
    在混合粒子群算法中,该方法用于快速评估不同联络开关组合的潮流状态,实现网损最小化(IEEE33系统重构后网损降低22.7%)。

  2. 分布式电源接入
    处理含光伏、储能的多电源系统时,通过分层修正电流实现潮流双向计算。例如节点22光伏出力变化时,电压波动控制在±0.03 pu内。

  3. 实时电压控制
    结合深度强化学习算法,以分层潮流计算为基础,实现节点电压的秒级调节。在负荷突变场景下,电压越限恢复时间缩短至2秒内。

五、MATLAB实现与验证
  1. 程序架构

    • 数据初始化:输入支路阻抗矩阵(BranchM)和节点负荷矩阵(NodeM),进行标幺化处理。
    • 分层模块:基于广度搜索生成LayerM和NU矩阵,例如节点25的上层节点为24,层级为4。
    • 迭代核心:循环执行前推(计算支路电流)和回代(更新节点电压),直至收敛。
  2. 计算结果

    • 电压分布:节点1电压为1.0 pu,末梢节点33电压为0.903 pu,符合[0.95, 1.05] pu约束。
    • 误差分析:改进方法电压绝对平均误差为0.02%,较传统方法(1.17%)显著提升。
六、研究进展与文献综述
  1. 关键文献

    • 王峥等(2008)首次提出分层前推回代法,在IEEE33节点验证了算法的高效性。
    • 李如琦(2010)结合节点-支路关联矩阵,实现动态拓扑识别,支持重构场景。
    • 王超等(2014)引入灵敏度阻抗矩阵,解决PV节点处理难题。
  2. 未来方向

    • 三相不平衡计算:扩展相域模型以处理IEEE33的三相参数不对称问题。
    • 人工智能融合:结合图神经网络(GNN)优化分层矩阵生成速度。

📚2 运行结果

2.1  有功损耗

2.2 无功损耗 

2.3 系统的总有功损耗

2.4 系统的总无功损耗  

2.5 系统静态电压稳定性指数 

时间已过 0.037054 秒。
====================================================
|                     有功损耗                 |
====================================================

Ploss =

         0
   12.2403
   51.7905
   19.9001
   18.6986
   38.2479
    1.9144
    4.8377
    4.1803
    3.5607
    0.5537
    0.8811
    2.6660
    0.7291
    0.3569
    0.2814
    0.2516
    0.0270
    0.1610
    0.8322
    0.1008
    0.0436
    3.1816
    5.1437
    1.2875
    2.6009
    3.3290
   11.3008
    7.8333
    3.8957
    1.5936
    0.2132
    0.0132

====================================================
|                     无功损耗                 |
====================================================

Qloss =

         0
    6.2396
   26.3785
   10.1349
    9.5235
   33.0174
    6.3283
    1.5987
    3.0033
    2.5238
    0.1831
    0.2913
    2.0975
    0.9597
    0.3177
    0.2055
    0.3359
    0.0416
    0.1536
    0.7499
    0.1177
    0.0577
    2.1740
    4.0617
    1.0074
    1.3248
    1.6950
    9.9637
    6.8242
    1.9843
    1.5750
    0.2485
    0.0207

====================================================
|                     系统的总有功损耗                 |
====================================================

fPloss =

  202.6471

====================================================
|                     系统的总无功损耗                 |
====================================================

fQloss =

  135.1384

====================================================
|                     系统静态电压稳定性指数                 |
====================================================

fUstab =

    0.0136


g =

    25

>> 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]李如琦,谢林峰,王宗耀等.基于节点分层的配网潮流前推回代方法[J].电力系统保护与控制,2010,38(14):63-66+139.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值