概率论基础-严士健 第二版 习题与补充5.1答案

概率论基础-严士健 第二版
习题与补充5.1答案
1.不返回抽样时:P(第二次抽的废品|第一次抽的合格品) = M N − 1 \frac{M}{N-1} N1M
返回抽样时:P(第二次抽的废品|第一次抽的合格品) = M N \frac{M}{N} NM
2.P(废品率) = ∑ P ( 废 品 率 ∣ 机 器 i ) P ( 机 器 i ) = 8 15 × 0.01 + 5 15 × 0.02 + 2 15 × 0.04 = 13 750 \sum P(废品率|机器i)P(机器i) = \frac{8}{15} \times 0.01 + \frac{5}{15} \times 0.02 +\frac{2}{15} \times 0.04 = \frac{13}{750} P(i)P(i)=158×0.01+155×0.02+152×0.04=75013.
3. P ( 合 格 品 ∣ 获 得 出 厂 许 可 ) = P ( 合 格 品 ∩ 获 得 出 厂 许 可 ) P ( 获 得 出 厂 许 可 ) = P ( 获 得 出 厂 许 可 ∣ 合 格 品 ) P ( 合 格 品 ) P ( 获 得 出 厂 许 可 ∣ 合 格 品 ) P ( 合 格 品 ) + P ( 获 得 出 厂 许 可 ∣ 废 品 ) P ( 废 品 ) = 0.98 × 0.96 0.98 × 0.96 + 0.05 × 0.04 P(合格品|获得出厂许可) = \frac{P(合格品\cap获得出厂许可)}{P(获得出厂许可)} = \frac{P(获得出厂许可|合格品)P(合格品)}{P(获得出厂许可|合格品)P(合格品) + P(获得出厂许可|废品)P(废品)} = \frac{0.98 \times 0.96}{0.98 \times 0.96 + 0.05 \times 0.04} P()=P()P()=P()P()+P()P()P()P()=0.98×0.96+0.05×0.040.98×0.96.
P ( 废 品 ∣ 未 获 得 出 厂 许 可 ) = P ( 废 品 ∩ 未 获 得 出 厂 许 可 ) P ( 未 获 得 出 厂 许 可 ) = P ( 未 获 得 出 厂 许 可 ∣ 废 品 ) P ( 废 品 ) P ( 未 获 得 出 厂 许 可 ∣ 合 格 品 ) P ( 合 格 品 ) + P ( 未 获 得 出 厂 许 可 ∣ 废 品 ) P ( 废 品 ) = 0.95 × 0.04 0.02 × 0.96 + 0.95 × 0.04 P(废品|未获得出厂许可) = \frac{P(废品\cap未获得出厂许可)}{P(未获得出厂许可)} = \frac{P(未获得出厂许可|废品)P(废品)}{P(未获得出厂许可|合格品)P(合格品) + P(未获得出厂许可|废品)P(废品)} = \frac{0.95 \times 0.04}{0.02 \times 0.96 + 0.95 \times 0.04} P()=P()P()=P()P()+P()P()P()P()=0.02×0.96+0.95×0.040.95×0.04.
4. P ( η = m ) = ∑ n P ( η = m ∣ ξ = n ) P ( ξ = n ) = ∑ n ( n m ) p m ( 1 − p ) ( n − m ) λ n n ! e − λ = ( p λ ) n n ! e − p λ P(\eta = m) = \sum_n P(\eta = m | \xi = n) P(\xi=n) = \sum_n \left( \begin{array}{c} n \\ m \\ \end{array} \right) p^m (1-p)^{(n-m)} \frac{\lambda^n} {n!}e^{-\lambda} = \frac{(p\lambda)^n} {n!}e^{-p\lambda} P(η=m)=nP(η=mξ=n)P(ξ=n)=n(nm)pm(1p)(nm)n!λneλ=n!(pλ)nepλ.
5. E ( ξ ∣ { μ = n } ) = E ( ξ 1 + ⋯ + ξ n ∣ { μ = n } ) = E ( ξ 1 + ⋯ + ξ n ) = ∑ k = 1 n E ξ k . E(\xi|\{\mu=n\}) = E(\xi_1 + \dots + \xi_n |\{\mu=n\}) = E(\xi_1 + \dots + \xi_n) = \sum_{k=1}^nE\xi_k. E(ξ{μ=n})=E(ξ1++ξn{μ=n})=E(ξ1++ξn)=k=1nEξk.
E ξ = E [ E ( ξ ∣ { μ } ) ] = ∑ k = 1 ∞ E ( ξ ∣ { μ = k } ) P [ { μ = k } ] = ∑ k = 1 ∞ ∑ i = 1 k E ( ξ i ) P [ { μ = k } ] = ∑ k = 1 ∞ E ( ξ k ) P [ { μ ≥ k } ] E\xi = E[E(\xi|\{\mu\})] = \sum_{k=1}^{\infty} E(\xi|\{\mu=k\})P[\{\mu=k\}] = \sum_{k=1}^{\infty}\sum_{i=1}^k E(\xi_i)P[\{\mu=k\}] = \sum_{k=1}^{\infty} E(\xi_k)P[\{\mu \geq k\}] Eξ=E[E(ξ{μ})]=k=1E(ξ{μ=k})P[{μ=k}]=k=1i=1kE(ξi)P[{μ=k}]=k=1E(ξk)P[{μk}]
E ξ k = a E\xi_k = a Eξk=a,则 E ξ = ∑ k = 1 ∞ a P [ { μ ≥ k } ] = a ⋅ E μ E\xi = \sum_{k=1}^{\infty} aP[\{\mu \geq k\}] = a \cdot E\mu Eξ=k=1aP[{μk}]=aEμ.
6.由第五题立得 E ( ξ 1 + ⋯ + ξ μ ) = E ξ ⋅ E μ = λ β . E(\xi_1 + \dots + \xi_{\mu}) = E\xi \cdot E\mu = \frac{\lambda}{\beta}. E(ξ1++ξμ)=EξEμ=βλ.

已标记关键词 清除标记
相关推荐
概率论基础:第二 作者: 严士健 著 ; 王隽骧 著 ; 刘秀芳 著 出社: 科学出社 出时间: 2009-08 次: 2 ISBN: 9787030251558 定价: 66.00 装帧: 平装 开本: 16开 纸张: 胶纸 页数: 428页 正文语种: 简体中文 丛书: 现代数学基础丛书129 内容简介:   《概率论基础(第二)》用测度论的观点论述概率论的基本概念,如概率、随机变量与分布函数、数学期望与条件数学期望和中心极限定理等,《概率论基础(第二)》特点是把测度论的基本内容与概率论的基本内容结合在一起讲述,论述严谨,条理清楚,便于自学。凡学过概率论基础课的读者都能阅读《概率论基础(第二)》。每节后面附有习题,以便加深理解书中的内容。   读者对象是大学数学系高年级学生、研究生、教师及科学工作者。 目录: 《现代数学基础丛书》序 再前言 序言 第1章 概率与测度 1.1 引言 1.2 事件与集合 1.3 集类与单调类定理 1.4 集函数、测度与概率 1.5 测度扩张定理及测度的完全化 1.6 独立事件类 第2章 随机变量与可测函数、分布函数与Lebesgue-Stieltjes测度 2.1 随机变量及其分布函数的直观背景 2.2 随机变量与可测函数 2.3 分布函数 2.4 独立随机变量 2.5 随机变量序列的收敛性 第3章 数学期望与积分 3.1 引言 3.2 积分的定义和性质 3.3 收敛定理 3.4 随机变量函数的数学期望的L-S积分表示与积分变换定理 3.5 离散型和连续型随机变量 3.6 γ次平均收敛与空间Lγ 3.7 不定积分与σ-可加集函数的分解 第4章 乘积测度空间 4.1 有限维乘积测度 4.2 Fubini定理 4.3 无穷乘积概率空间 第5章 条件概率与条件数学期望 5.1 初等情形 5.2 给定σ-代数下条件期望与条件概率的定义和性质 5.3 给定函数下的条件数学期望 5.4 转移概率与转移测度 5.5 正则条件概率、条件分布及Кологоров和谐定理 第6章 特征函数及其初步应用 6.1 特征函数的定义及初等性质 6.2 逆转公式及唯一性定理 6.3 L-S测度的弱收敛 6.4 特征函数极限定理 6.5 特征函数的非负定性 第7章 独立随机变量和 7.1 0-1律 7.2 三级数定理与Кологоров加强大数律 第8章 中心极限定理 8.1 问题的提出 8.2 中心极限定理一一具有有界方差情形 8.3 中心极限定理一般结果简介 参考文献 符号索引 内容索引 《现代数学基础丛书》已出书目
<span style="color:#666666;font-size:14px;background-color:#FFFFFF;">这是一门简单易懂的概率论课程!</span><br /> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">看教材学概率论实在是看不懂,教材编写者一般会认为教材有老师来讲解,所以自学教材会备受打击。</span><br /> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">本课程最大特色就是 简单易懂, “简单易懂”意味着我会用简单的语言,你容易听懂的语言教你概率知识,而不是让你越听越晕。</span><br /> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">没有概率论就没有统计学,也基本上就不存在机器学习了,从而人工智能也不会有今天这样的繁荣发展。如果要从事数据科学行业,不懂概率论或者对概率论一知半解,基本上都要回过头重新学习概率论,因为吃不透概率论就吃不透算法原理,也就只能永远半吊子,在数据科学行业半吊子那基本上就没有你的位置了。</span><br /> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">各位,还是沉下心来老老实实的把概率论认真的学好吧!别想着速成,速成只会浪费你更多的时间!当然了,找到一个好老师教你,的确可以让你比别人更快的学会学好,比如我的这门概率论教程!</span><br /> <br /> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页