希尔(Shell)排序 一种较优的排序方法
接触了选择排序和插入排序等基础的排序算法以后,在排序算法题中使用这些算法有时会发现用时很长。
本篇将以升序排序为例子
如果仔细观察选择排序的运行过程,你会发现其两个特点。
1.运行时间和输入有序程度无关。 为了找出最小的元素而扫描一遍数组并不能为下一遍扫描提供什么信息。
如果你输入的是一个有序或者全部相等的数组,你会惊讶地发现,其所用时间和你输入无序的数组所用的时间一样长。
2.交换次数是相对来说最少的。 交换次数和数组大小是线性关系。
对于插入排序
插入排序对于部分有序的数组的排序是很快的,在排序那些小部分无序的数组时,插入排序可能是最快的基础排序方法。
那么对于希尔排序呢?
如果计算的排序不是非常大,希尔排序通常是个不错的选择,因为相比于一些比较高级的排序算法希尔排序的代码量是很小的,而它的运行时间是我们都比较容易接受的,而且不需要额外的储存空间。
希尔排序
希尔排序的思想是使数组中任意间隔为h的元素都是有序的。这样的数组被称为h有序数组。教
句活说,一个h有序数组就是h个互相独立的有序数组编织在一起组成的一个数组(如下图1)。
在进行排序时,如果h很大,我们就能将元素移动到很远的地方,为实现更小的h有序创造方便。用
这种方式,对于可以实现h=1的h序列,我们都能够将数组排序,这就是希尔排序。
h=4:
图1.一个h有序数组即一个由h个有序数组组成的数组
实现希尔排序的一种方法是对于每个h,用插入排序将h个子数组独立地排序。但因为子数组是相互独立的,一个更简单的方法是在h子数组中将每个元素交换到比它大的元素之前去(将比它大的元素向右移动一格)。只需要在插入排序的代码中将移动元素的距离由1改为h即可。
这样,希尔排序的实现就转化为了一个类似于插人排序但使用不同增量的过程。
希尔排序更高效的原因是它权衡了子数组的规模和有序性。
代码实现
代码的实现使用了序列1/2*(3^k-1),从N/3开始遵减至1。我们把这个序列称为选增序列。实时计算了
它的递增序列,另一种方式是将递增序列存储在一个数组中。
void shell(char a[]) //按升序排列
{
char temp;
int N = sizeof(a) / sizeof(a[0]); //获取数组长度
int h = 1;
while( h < N/3 )
{
h = 3*h + 1; //计算N以内的最大h长度,这里为什么是3,其实并没有固定是3,这取决与你的个人选择,但是不要太低,否则就变成了插入算法
}
while( h >= 1 )
{
for( int i = h; i < N; i++ )
{ //将a[i]插入到a[i-h],a[i-2*h]....之中,然后继续对a[i+1]进行同样操作
for( int j = i; j >= h && a[j] < a[j-h];j -= h )
{ //将a[j]逐级交换,直到条件不满足
temp = a[j];
a[j] = a[j-h];
a[j-h] = temp;
}
h = h/3; //注意此处的系数3应该与前面while循环的递增系数相等
}
}
}
这里我们可以看到当h=1时,得到的是正确的结果。
和选择排序以及插入排序形成对比的是,希尔排序也可以用于大型数组。它对任意排序(不一定
随机的)的数组表现也很好。实际上,对于一个给定的递增序列,构造一个希尔排序运行致慢的数组并不容易。