给定一个正整数数组 nums和整数 k ,请找出该数组内乘积小于 k 的连续的子数组的个数。
示例 1:
输入: nums = [10,5,2,6], k = 100
输出: 8
解释: 8 个乘积小于 100 的子数组分别为: [10], [5], [2], [6], [10,5], [5,2], [2,6], [5,2,6]。
需要注意的是 [10,5,2] 并不是乘积小于100的子数组。
示例 2:
输入: nums = [1,2,3], k = 0
输出: 0
提示:
- 1 <= nums.length <= 3 * 104
- 1 <= nums[i] <= 1000
- 0 <= k <= 106
思路:还是滑动窗口,这里有一个知识点:如果l~r的数组满足条件,子数组的情况有r-l+1个,而且子数组都包含了nums[r],这样保证了不会重复计算。
int numSubarrayProductLessThanK(vector<int>& nums, int k) {
int res = 0, left = 0, right = 0, product = 1;
while (right < nums.size()) {
product *= nums[right];
while (left < right && product >= k) {
product /= nums[left];
left++;
}
if (product < k) {
res += right - left + 1;
}
right++;
}
return res;
}
//这么写也可以
int numSubarrayProductLessThanK(vector<int>& nums, int k) {
int res = 0, left = 0, right = 0, product = 1;
while (right < nums.size()) {
while (right < nums.size() && product * nums[right] < k) {
res = res + right - left + 1;
product *= nums[right];
right++;
}
if (left == right) {
right++;
}
product /= nums[left];
left++;
}
return res;
}