java opencv4.5 人脸对比_纠结Python还是Java?每日拿出本文2小时,15周后15k+文末附教程...

本文探讨了编程语言在AI开发中的角色,重点关注Python和Java。Python因其易学性和丰富的库支持,被广大开发者用于AI项目,尤其在数据科学和机器学习领域。而Java虽然不是首选,但通过TensorFlow的Java API、Deep Java Library等工具,也在AI领域占有一席之地。文章还提供了Python和Java的学习资源,包括入门教程、数据结构、算法和深度学习框架。
摘要由CSDN通过智能技术生成

有人曾经将编程比作做菜,那编程语言就是首先要准备的食材或厨具。

ce744953b9e9c302a64480fb6db6ab17.png

C:一把菜刀一口炒锅,一个很好用的灶,隔壁有个菜市场。

Java:碎菜器,切菜机,绞肉机,和面机,烤箱,微波炉……

Python:大超市的速冻柜台,要成品有成品,要半成品有半成品,什么都有。它能让你快速获得一桌还能吃的饭,但是深究口味火候什么的不那么容易。

C++:一套顶级厨具,光刀就十几把,切肉的切片的雕花的;锅有爆炒的闷烧的平底煎肉的煎蛋的炖汤的……有人试图用二十一天掌握这套工具的用法,结果往往是玩刀伤了自己,或者是炸了厨房。

选自知乎用户:
https://www.zhihu.com/question/284549387/answer/451018336

尽管在刚开始开发 AI 时,有很多编程语言都可以满足你的需求,但没有一种编程语言是可以一站式解决 AI 编程的问题,因为在每一个项目中,不同的目标需要特定的方法。

和做菜时的精挑细选一样,在成为一个「高手」的过程中,我们要学会的是找到最适合自己的编程语言。

Python

Python 是可读的最强大的语言。—Pau Dubois

9cf02bf351439c619e69b4035a72d2de.png

Python 编程。图源:Unsplash。

Python 开发于 1991 年,一项民意调查表明,在开发 AI 时,超过 57% 的开发者将 Python 作为首选编程语言,而不是 C++。因为易于学习,Python 让程序员和数据科学家可以更轻松地进入开发 AI 的世界。

Python 是一个程序员需要多少自由度的「实验」。太自由,没人可以读懂别人的代码;太不自由,就会没那么强的表现力。—Guido van Rossum

使用 Python,你不仅可以获得优秀的社区支持和广泛的库集,还能享受到其灵活性。你从 Python 中得到的最大的好处可能是平台独立性和针对深度学习和机器学习的广泛框架。

用 Python 编码的乐趣在于可以看到短小精悍、可读性高的类,这些类可以用少量清晰的代码表达大量行为(而不是用大量代码烦死读者)。——Guido van Rossum

2020最新Python零基础到精通资料教材,干货分享,新基础Python教材,看这里,这里有你想要的所有资源哦,最强笔记,教你怎么入门提升!让你对自己更加有信心,重点是资料都是免费的,免费!!!

ff5a51935a7cde5b7246168f04f56708.png

本视频是面向编程零基础学员的Python入门教程,内容涵盖了Python的基础知识和初步应用。以较轻快的风格,向零基础学习者介绍了一门时下比较流行的、并且用途比较广泛的编程语言。同时,其语法简洁而清晰,类库丰富而强大,非常适合于进行快速原型开发。另外,Python可以运行在多种系统平台下,从而使得只需要编写一次代码,就可以多个系统平台下保持有同等的功能。

为了能够使广大学员既能够掌握Python语言的基础知识,又能够将Python语言用于某个特定的领域,本视频将全面介绍和Python相关的这些内容。在学习完本视频之后,相信学员可以很好地掌握Python语言,同时可以使用Python语言进行实际项目的开发。

本视频以理论与实际相结合为原则,为每个知识点都设计了对应的示例,让Python的初学者能够既快速又深刻的理解这些知识点。同时在每章的最后设计了针对各章内容的作业题,能够让学员趁热打铁,以达到巩固所学知识的目的。

本视频的主要特色:

1.循序渐进,由浅入深 为了方便学员学习,本视频首先让学员了解Python的历史和特点,通过具体的例子逐渐把学员带入Python的世界,掌握Python语言的基本要点以及基础类库、常用库和工具的使用。

2.技术全面,内容充实 本视频在保证内容使用的前提下,详细介绍了Python语言的各个知识点。同时,本视频涉及的内容非常全面,无论从事什么行业的学员,都可以从本视频中找到可应用Python与本行业的地方。

3.代码完整,详解详尽 对于视频中的每个知识点都有一段示例代码,并对代码的关键点进行了注释说明。每段代码的后面都有详细的分析,同时给出了代码运行后的结果。学员可以参考运行结果阅读源程序,加深对程序的理解。

如何快速入门?

本视频如何学习?

本视频共分为25章,为了方便大家的学习,我们对各章节做简要说明。

第一章:讲解Python能做什么、Python的特征和优势、Python环境的搭建等内容。

第二章:讲解Python的语法知识,深入了解Python的编码规则、变量和常量的声明及使用、数据类型、运算符和表达式。通过本章的学习,学员能掌握Python编码的一些规范及一些基本概念。

第三章:讲解Python中的控制语句、循环语句以及一些习惯用法,结合示例讲解了Python结构化编程的要点。

第四章:讲解Python的内置数据结构(列表、元祖、字典、集合)。根据使用习惯分别介绍了这些内置数据结构的特点以及区别。

第五章:讲解Python中函数的概念。重点介绍了Python的函数的定义、调用、传参、递归函数等内容。

第六章:讲解面向对象程序设计,重点讲解如何实现面向对象的三大特性及设计模式。

第七章:讲解Python中的模块、包的概念,重点讲解了模块的导入及使用。

第八章:讲解Python对异常的处理、异常的捕获和抛出、自定义异常等内容。

第九章:讲解Python对文件的基本操作,包括文件的创建、读写、删除、复制。重点讲解了pickle序列化、处理JSON格式的数据。

第十章:讲解正则表达式的概念以及re模块处理正则表达式。

第十一章:讲解Python中进程和线程的概念。主要的内容包括进程和线程的创建及管理。重点讲解了多线程环境下数据同步。

第十二章:讲解Python中和网络编程相关的内容,包括使用TCP/UDP协议实现服务器端和客户端的通信。

第十三章:讲解Python自带的GUI开发库Tkinter的基本组件及其使用方法,并给出每种组件的详细示例代码。

第十四章:讲解坦克大战游戏详细实现。用一个游戏项目将前面的基础知识做了串联,让大家了解项目开发的全流程。

第十五章:讲解Python数据库开发方面的知识,重点讲解了SQLite数据库和MySQL数据库。数据库技术是实现动态软件技术的必要手段,因此掌握数据库开发是非常必要的。

第十六章:协程和异步IO。本章讲解了线程、进程和协程的优缺点、协程的概念、协程的创建、协程阻塞、协程嵌套和并行与并发的概念。

第十七章:算法。本章通过实例引导让大家知道为什么要有算法,重点讲解了算法效率衡量、常见的排序算法(冒泡、选择、插入、快速、归并)和查找算法(顺序查找法、二分查找法)。

第十八章:数据结构。本章主要讲解了常见的几种数据结构,包括顺序表、链表、栈、队列和二叉树,并对不同存储结构和相应算法的分析对比。

第十九章:函数式编程和高阶函数。本章主要讲解了什么是函数式编程、常用高阶函数(map、reduce、filter、sorted)、匿名函数、闭包装饰器及偏函数的应用。

第二十章:本章讲解Numpy数组创建、索引切片、拼接和一些通用函数。Numpy是一个非常强大的科学计算库,为学习数据科学、人工智能打下一定基础。

第二十一章:本章讲解Matplotlib的基本使用方法,通过对本章的学习,可以对Matplotlib的基本使用方法有一个全面的了解,进而对大多数数据进行可视化。

第二十二章:本章讲解图像处理的功能。通过使用Pillow库,可以方便地使用Python程序对图片进行处理,例如常见的尺寸、格式、色彩、旋转等处理。

第二十三章:本章讲解语音识别技术。通过本章学习可以将人类的语音内容转换为相应的文字和文字转换为语音。

第二十四章:本章讲解OpenCV基本使用,并完成在图片中检测一张人脸是谁的过程。

第二十五章:本章讲解TensorFlow框架基本使用,并给出线性回归和手写数字识别示例的详细代码。

Python400集 入门课程:

转发+关注并私信小编“学习”即可获取

1eb604d0ffaafb0e4365c22de030191c.png

这些课程如果想要了解的请转发+关注私信小编“ 学习 ”即可了解

8a3ea71cab8f9aa9d4de19df5b979382.png

第一阶段Python入门

章节1:Python入门

章节2:编程基本概念

章节3:序列

章节4:控制语句

章节5:函数

章节6:面向对象编程

26347df6a9e440ff74d7a8e188a54c2d.png

第二阶段Python 深入与提高

章节1:异常处理

章节2:文件处理

章节3:模块

章节4:GUI编程

章节5:游戏开发-坦克大战

a8fe43668b2800bdf39593043182561b.png

第三阶段Python 网络与并发编程

章节1:并发编程

章节2:网络通信

c3bd73a1c710194a1ad16b4789c98cc1.png

第四阶段Python 核心特性

章节1:生成器和装饰器

章节2:函数式编程

章节3:正则表达式

章节4:内存管理

7e54c9c2131b57abdf3784a004dfc65a.png

第五阶段数据库编程基础

章节1:数据库环境搭建

章节2:SQL 语句基础

7eb23f925b2bf766dca306e3d84fb78f.png

第六阶段Linux 环境编程基础

章节1:安装和系统认知

章节2:文件管理,数据分析命令

章节3:用户权限管理和安装管理

章节4:重定向

030a996e61d34ca2dabb110d7efd4260.png

第七阶段网页编程基础

章节1:html5

章节2:CSS 样式

章节3:JavaScript

章节4:jquery

d1aeaf7f63c3bf9f34e9900bd2f1fe0c.png

第八阶段Flask框架

章节1:虚拟环境

章节2:Flask视图基础和URL

章节3:Flask之Jinja2模版

章节4:Flask视图高级

章节5:Flask高级

章节6:Flask数据库

93bf34eed9cb2015666458dc9cd0e2d7.png

第九阶段Python_Django2 框架

章节1:Django初级

章节2:Django进阶

章节3:Djangogo高级

章节4:Git版本控制(含接口文档补充内容)

9ba817022bcd8e2341ad918c71a0ec0a.png

第十阶段Python_Tornado 框架

章节1:Tornado 语法

章节2:Tornado 深入学习

章节3:Tornado 数据库操作

章节4:Tornado 异步

be0c251c4c0bd9fa3b3c41234b6157e9.png

第十一阶段Python_大型电商项目

章节1:Django项目阶段-电商项目

e48e5515ce66f9ae58edefd45821a126.png

第十二阶段Python 爬虫开发

章节1:爬虫介绍与常用工具

章节2:爬虫开发常用模块

章节3:数据提取与验证码识别

章节4:scrapy 框架简介与配置

章节5:scrapy 框架高级

章节6:爬虫数据存储

章节5:scrapy 框架高级

章节8:分布式爬虫

b9287f792044c8795661e2fe2651b157.png

第十三阶段算法与数据结构

章节1:算法与数据结构

07e11a6ef815f601d7cf4db449004b99.png

第十四阶段数据分析理论和实战

章节1:补充数学知识

章节2:matplotlib

章节3:seaborn

章节4:Anaconda介绍_安装_操作

章节5:ipython介绍

章节6:jupyter notebook_介绍和使用

章节7:numpy

章节8:pandas

章节9:数据获取_清洗_整理

章节10:多层索引

章节11:数据分析案例_案例1_足球运动员分析

章节12:数据分析案例_案例2_电影数据分析

章节13:数据分析案例_案例3_机场延迟分析

6a7e561d54e469c5fedd196b11eb6290.png

第十五阶段人工智能基础_机器学习理论和实战

章节1:无约束最优化问题的求解算法

章节2:三种梯度下降法

章节3:代码实战梯度下降法与优化

章节4:归一化

章节5:正则化

章节6:多元线性回归的衍生算法

章节7:多项式升维

章节8:逻辑回归和Softmax回归

章节9:逻辑回归优化与拟牛顿法

章节10:SVM支持向量机

章节11:决策树

章节12:随机森林

章节13:分类评估指标

章节14:Adaboost

章节15:GBDT和XGBoost

b5dee3030c0b6b2ff4c89007e036b8fe.png

第十六阶段人工智能基础_深度学习理论和实战章节1:理解神经网络及应用

章节2:Tensorflow入门与安装

章节3:反向传播及利用Tensorflow完成浅层模型

章节4:Tensorflow使用优化器以及模型的存储和加载

章节5:深度神经网络DNN

章节6:卷积神经网络CNN

章节7:卷积神经网络实战

章节8:Keras框架

b161fedb5a0d56c692c01b60a9994894.png

第十七阶段Hadoop 分布式文件系统:HDFS(扩展)

章节1:Hadoop 简单介绍及架构设计

章节2:Hadoop 高可用集群及java API

3e10d7eb4f225184d4915532e7d8c334.png

第十八阶段Hadoop 分布式计算框架:Mapreduce(扩展)

章节1:MapReduce 分布式计算框架架构设计及项目案例

5ddd453412dd1f4352715918bc686cdd.png

第十九阶段Hadoop 离线体系:Hive(扩展)

章节1:hive架构、搭建、sql语法、函数

章节2:hive分区、分桶、安全认证、优化

79371b9414887b8102ee8a2363a0d65b.png

第二十阶段spark体系之分布式计算(扩展)章节1:Scala语言特点、类、对象、集合

章节2:Scala隐式转换、通信模型

章节3:Spark初始、核心RDD、算子

章节4:Spark集群搭建、任务提交流程

章节5:Spark计算模式、任务调度和资源调度

章节6:Spark核心源码

章节7:Spark业务场景、Shuffle机制

章节8:SparkShuffle源码、SparkSQL初始

章节9:SparkSQL函数、SparkStreaming初始

章节10:Kafka、SparkStreaming+Kafka两种版本整合

430620f277a1ca7739570c8f861cc0f8.png

第二十一阶段Python_数据分析项目

章节1:人工智能项目流程

章节2:二手车价格预测

章节3:旅游景点票价预测

章节4:工资分类预测

章节5:广告点击转化率预测

章节6:文本分类-自然语言处理

章节7:音乐推荐系统

章节8:银行客户流失分析

章节9:申请评分卡

9c4cecbc20ca1ae62fe0c3b33558af5f.png

第二十二阶段面试和成功求职的秘技

章节1:简历

章节2:面试前的准备

章节3:笔试和面试

章节4:offer 和上班后,如何应对

ebc5c37695687a8cf4ea460b2c555293.png

第二十三阶段入职后快速成长到CTO

章节1:入职后三个月试用期要做的事

章节2:前三年需要学的技术

章节3:前三年需要提高的软实力

Java

编写一次,随时运行。

Java 被公认为世界上最好的编程语言之一,它在过去 20 年间的使用情况就是最好的证明。

凭借其用户友好度、灵活的特性以及平台独立性,Java 以各种方式参与到了 AI 的开发中,比如:

  • TensorFlow——TensorFlow 支持的编程语言中也列出了带有 API 的 Java。虽然不像其他完全支持的语言那样功能丰富,但确实支持 Java,并且在迅速地改进。
  • Deep Java Library(深度 Java 库)——亚马逊开发的、用 Java 来创建并部署深度学习能力的库。
  • Kubeflow——Kubeflow 使在 Kubernetes 上部署和管理机器学习堆栈更容易,还提供了现成的 ML 解决方案。
  • OpenNLP——Apache 的 OpenNLP 是用于自然语言处理的机器学习工具。
  • Java Machine Learning Library(Java 机器学习库)——Java-ML 为开发者提供了多种机器学习算法。
  • Neuroph——Neuroph 借助 Neuroph GUI,利用 Java 开源框架设计了神经网络。

如果 Java 可以垃圾回收,大多数程序都会在执行时删除自己。——Robert Sewell

Java 代码片段示例:

554b8c4caf908d448d382877c998a814.png

Java 代码段示例。

Java 入门课程:

532fd1bd0c34214b3d962a1a1a78269e.png
87a5de09e4f2822681ac3cc862d21bb8.png

以上这些课程如果想要了解的请私信小编“ 学习”即可了解,喜欢小编的可以关注支持一下,谢谢大家支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值