MATLAB博弈论实战课程设计

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:博弈论是研究决策者互动的理论,MATLAB环境下提供了构建和分析博弈论模型的便利工具。本资源通过一系列MATLAB源代码,介绍了零和博弈、非零和博弈、扩展形式博弈、合作博弈、重复博弈和随机博弈等模型,并展示了如何在MATLAB中求解这些博弈问题。通过本课程设计,学习者可以理解博弈论的数学原理,并掌握实际应用和MATLAB代码编写技巧,为在经济学、社会科学和工程领域的深入研究提供帮助。 1913167_Game-Theory-for-MATLAB.zip_game theory_matlab_matlab博弈论_

1. 博弈论基本概念介绍

1.1 博弈论的起源与发展

博弈论,又称对策论,是研究具有冲突和合作特性的决策者(即“博弈者”)之间战略互动的数学理论。它的起源可以追溯到1944年约翰·冯·诺伊曼和奥斯卡·摩根斯坦的著作《博弈论与经济行为》。随后,约翰·福布斯·纳什的理论贡献进一步推动了博弈论的发展,特别是他提出的纳什均衡概念,为理解非合作博弈提供了关键工具。

1.2 博弈论的基本要素

博弈论的基本要素包括参与者(博弈者)、策略、收益和博弈的规则。参与者是博弈中的决策主体,它们可以是个人、公司、国家或任何可以做出决策的实体。策略是指参与者在博弈中采取的行动计划或规则,而收益则是指博弈者在博弈结束后获得的效用或回报。博弈的规则定义了博弈的结构,包括博弈的顺序、可选行动以及这些行动的结果。

1.3 博弈的分类

博弈按照不同的标准可以分为多种类型。根据参与者之间的互动特征,博弈可以分为零和博弈和非零和博弈。零和博弈中,一个参与者的收益必然等于另一个参与者的损失,而非零和博弈则允许所有参与者的收益总和非零。根据博弈者是否合作,博弈又可以分为非合作博弈和合作博弈。此外,根据博弈的展开形式,还可以分为静态博弈和动态博弈,以及完全信息博弈和不完全信息博弈。

在下一章中,我们将探讨MATLAB在博弈论中的应用,以及如何使用这一强大的工具来实现博弈论模型的建立和策略求解。

2. MATLAB在博弈论中的应用

2.1 MATLAB的基本操作和函数库

2.1.1 MATLAB界面和基本命令

在本章节中,我们将首先了解MATLAB的基本界面和一些常用的命令。MATLAB(Matrix Laboratory的缩写)是一种高性能的数值计算环境和第四代编程语言。它由MathWorks公司于1984年推出,广泛应用于工程计算、控制设计、信号处理和通信领域。

. . . MATLAB界面概览

MATLAB的用户界面主要由以下几个部分组成:

  1. 命令窗口 :用户可以直接在命令窗口中输入命令,执行计算或者调用函数。
  2. 编辑器 :用户可以在这里编写和编辑M文件(MATLAB代码文件)。
  3. 工作空间 :显示当前工作环境中的变量列表。
  4. 路径和工具箱 :列出了所有可用的工具箱和路径,用户可以在这里添加自己的工具箱或者文件夹。
  5. 命令历史 :记录用户在命令窗口中执行的所有命令。
  6. 当前目录 :显示当前文件夹,用户可以通过这个窗口访问文件。
. . . 基本命令示例

MATLAB提供了一系列的基础命令,用于进行数学运算、数据操作和文件管理等。以下是一些基本命令的示例:

% 数学运算
a = 3; b = 4; c = sqrt(a^2 + b^2); % 计算勾股定理

% 数据操作
A = [1 2; 3 4]; % 创建一个2x2矩阵
B = A'; % 对矩阵进行转置
C = A * B; % 矩阵乘法

% 文件操作
load filename.mat % 加载一个MAT文件
save newfile.mat C % 保存变量C到MAT文件

2.1.2 MATLAB数值计算和图形绘制基础

. . . 数值计算功能

MATLAB强大的数值计算功能使其在科学计算领域非常受欢迎。它提供了多种内置函数和工具箱来处理线性代数、微积分、统计学和优化等问题。

% 线性代数
x = A\b; % 解线性方程组Ax=b

% 微积分
integrand = @(x) x.^2; % 定义一个匿名函数
integral_value = integral(integrand, 0, 1); % 计算定积分

% 统计学
mean_data = mean(A); % 计算矩阵A的平均值
std_data = std(A); % 计算矩阵A的标准差
. . . 图形绘制

MATLAB提供了丰富的图形绘制功能,可以创建二维和三维图表,以及各种复杂的图形和动画。

% 二维图表
x = linspace(0, 2*pi, 100);
y = sin(x);
plot(x, y); % 绘制正弦曲线

% 三维图表
[X, Y, Z] = meshgrid(-2:0.2:2, -2:0.2:2, -2:0.2:2);
V = X.^2 + Y.^2 + Z.^2;
surf(X, Y, Z, V); % 绘制三维曲面图

2.2 MATLAB与博弈论模型的结合

2.2.1 模型建立的MATLAB实现

在本小节中,我们将探讨如何使用MATLAB来建立博弈论模型。博弈论模型通常涉及到多个参与者的策略选择和结果分析,MATLAB可以帮助我们通过矩阵和函数来定义和模拟这些模型。

. . . 定义参与者和策略空间

在MATLAB中,我们可以使用矩阵来表示博弈的参与者和他们的策略空间。

% 定义参与者
players = {'Alice', 'Bob', 'Charlie'};

% 定义策略空间
strategies = {1, 2}; % 假设每个参与者有两个策略选择
. . . 定义支付函数

支付函数是博弈论中的核心概念,它决定了每个参与者在不同策略组合下的收益。

% 定义支付函数
payoff_matrix = [ ...
    [3, -1, -1; -1, 2, -1; -1, -1, 0], ... % Alice的支付矩阵
    [-1, 3, -1; 0, -1, 2; -1, -1, -1], ... % Bob的支付矩阵
    [-1, -1, 0; -1, 2, -1; 0, -1, 3]  ...  % Charlie的支付矩阵
];

2.2.2 策略求解与模拟的MATLAB工具

. . . 求解均衡策略

MATLAB提供了多种工具来求解博弈论中的均衡策略,例如纳什均衡。

% 使用MATLAB的优化工具箱求解纳什均衡
nash_equilibrium = gamultiobj(@payoff_function, size(payoff_matrix, 1), ...
    'Options', optimoptions('gamultiobj', 'PlotFcn', @gaplotpareto));
. . . 模拟博弈过程

我们可以使用MATLAB编写脚本来模拟博弈的过程,观察不同策略组合下的结果。

% 模拟博弈过程
for i = 1:100 % 进行100轮模拟
    % 随机选择策略
    strategies = randi(length(strategies), 1, length(players));
    % 计算支付
    payoffs = payoff_matrix(sub2ind(size(payoff_matrix), strategies, 1:length(players)));
    % 输出结果
    disp([players', strategies', payoffs']);
end

2.3 MATLAB在博弈论中的高级应用

2.3.1 图形用户界面(GUI)的设计与实现

MATLAB的图形用户界面(GUI)功能可以帮助用户更直观地设计和操作博弈论模型。

. . . GUI设计工具

MATLAB提供了一个名为GUIDE的图形用户界面设计工具,可以轻松创建复杂的GUI应用程序。

% 打开GUIDE
guide
. . . GUI与博弈论模型的交互

通过GUI,用户可以输入参数、启动模拟,并可视化结果。

% GUI代码示例
function simple_gui
    h.fig = figure('Position', [100, 100, 400, 300]);
    h.edit1 = uicontrol('Style', 'edit', 'Position', [100, 250, 100, 25]);
    h.edit2 = uicontrol('Style', 'edit', 'Position', [220, 250, 100, 25]);
    h.button = uicontrol('Style', 'pushbutton', 'Position', [160, 220, 80, 25], ...
        'String', 'Simulate', 'Callback', @simulate_callback);
end

% 模拟按钮的回调函数
function simulate_callback(~, ~)
    % 从GUI获取输入
    strategy1 = str2double(get(h.edit1, 'String'));
    strategy2 = str2double(get(h.edit2, 'String'));
    % 执行模拟
    % ...
end

2.3.2 MATLAB与外部数据的交互处理

MATLAB可以轻松地读取和写入外部数据,这对于处理大型博弈论模型和实证研究至关重要。

. . . 数据读取

MATLAB支持多种格式的数据读取,例如CSV、Excel、文本文件等。

% 读取CSV文件
data = csvread('data.csv');
. . . 数据写入

MATLAB也可以将数据写入到外部文件中。

% 写入Excel文件
xlswrite('data.xlsx', data);

在本章节中,我们介绍了MATLAB在博弈论中的基本操作、模型建立、策略求解和模拟,以及如何设计GUI和处理外部数据。通过这些内容,我们希望能够帮助读者更好地理解MATLAB在博弈论领域的应用,并在实际问题中应用这些知识。

3. 零和博弈与纳什均衡求解

3.1 零和博弈的基本理论

3.1.1 零和博弈的定义和特性

零和博弈是博弈论中的一个基本概念,其核心思想是参与者的利益完全对立,一方的收益等于另一方的损失。在这样的博弈中,所有参与者的总收益始终为零。这种博弈形式在经济学、政治学和军事战略中都有广泛的应用。例如,在商业竞争中,一家公司的市场份额增加往往意味着其他公司的市场份额减少。

3.1.2 零和博弈的分类和代表性例子

零和博弈可以分为有限博弈和无限博弈。有限零和博弈中,参与者在有限的步骤后达成均衡状态;无限零和博弈则没有明确的结束点。一个典型的零和博弈例子是猜硬币游戏,玩家轮流猜硬币的正反面,猜对者获得一定的奖励,猜错者则失去相应的赌注。

3.2 纳什均衡的理论基础

3.2.1 纳什均衡的概念和数学表达

纳什均衡是由数学家约翰·福布斯·纳什提出的概念,它描述了一种状态,其中每个参与者都选择了自己的最优策略,并且没有参与者可以通过单方面改变策略来增加自己的收益。在纳什均衡中,每个参与者的策略都是对其他参与者策略的最佳反应。

3.2.2 纳什均衡的存在性和唯一性分析

纳什均衡的存在性是博弈论中的一个重要问题。在有限策略的非合作博弈中,纳什均衡的存在性是可以保证的,但其唯一性则不总是成立。在某些情况下,可能存在多个纳什均衡,这就需要进一步的分析来确定哪个均衡是更为合理的。

3.3 纳什均衡的MATLAB求解

3.3.1 线性规划与MATLAB求解器

线性规划是求解纳什均衡的一种常用方法,特别是在零和博弈中。MATLAB提供了强大的线性规划求解器,如 linprog 函数,可以用来求解纳什均衡问题。使用 linprog 时,需要将问题转化为标准形式,并设置相应的约束条件和目标函数。

3.3.2 非线性规划与MATLAB优化工具箱

对于非线性博弈,可以使用MATLAB的优化工具箱中的 fmincon 函数来进行求解。非线性规划在求解非线性纳什均衡时更为灵活,但也更复杂。在使用 fmincon 时,需要定义目标函数、约束条件以及初始点等参数。

3.3.3 MATLAB代码实现与结果分析

. . . 线性规划求解示例

以下是一个使用 linprog 函数求解线性规划问题的MATLAB代码示例:

% 定义线性规划问题的目标函数系数
f = [-1; -1]; % 假设有两个玩家,玩家1和玩家2的收益函数系数分别为-1和-1

% 定义不等式约束矩阵和向量
A = [1, 1; -1, 1]; % 玩家1和玩家2的策略系数矩阵
b = [1; 0]; % 策略约束条件

% 定义变量的下界
lb = [0; 0]; % 策略的非负约束

% 调用linprog函数求解
[x, fval] = linprog(f, A, b, [], [], lb);

% 输出结果
disp('最优策略:');
disp(x);
disp('纳什均衡的收益:');
disp(-fval); % 因为linprog求解的是最小化问题,所以需要取负值
. . . 非线性规划求解示例

以下是一个使用 fmincon 函数求解非线性规划问题的MATLAB代码示例:

% 定义目标函数
function f = objective_function(x)
    f = x(1)^2 + x(2)^2; % 假设玩家1和玩家2的收益函数分别为x1^2和x2^2
end

% 定义非线性约束函数
function [c, ceq] = constraints(x)
    c = []; % 不等式约束为空
    ceq = x(1) + x(2) - 1; % 策略和为1的约束条件
end

% 初始点
x0 = [0.5; 0.5];

% 调用fmincon函数求解
options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'sqp');
[x, fval] = fmincon(@objective_function, x0, [], [], [], [], [], [], @constraints, options);

% 输出结果
disp('最优策略:');
disp(x);
disp('纳什均衡的收益:');
disp(fval);

在本章节中,我们介绍了零和博弈的基本理论,包括其定义、分类和代表性例子。接着,我们深入探讨了纳什均衡的概念、存在性和唯一性,并展示了如何使用MATLAB的线性规划和非线性规划工具来求解纳什均衡问题。通过具体的代码示例,我们展示了如何使用MATLAB实现这些数学模型,并分析了求解过程和结果。这些方法为处理更复杂的博弈问题提供了坚实的基础。

4. 非零和博弈求解方法

4.1 非零和博弈的理论与应用

4.1.1 非零和博弈的特点和重要性

非零和博弈是指参与者的利益不完全对立,他们的收益之和不为零的博弈。在这种博弈中,参与者之间的互动更加复杂,因为他们的利益可能是正相关、负相关或者是混合的。非零和博弈的特点在于,合作或者策略的调整可能会导致所有参与者的总收益增加,这一点与零和博弈中一方的收益必然等于另一方的损失形成了鲜明对比。

非零和博弈在现实生活中非常普遍,例如商业谈判、国际关系、环境保护等。在这些领域中,参与者之间的合作不仅有可能,而且往往是实现共赢的关键。理解非零和博弈的特点和应用,对于制定有效的策略、促进合作以及实现整体利益最大化具有重要意义。

4.1.2 典型非零和博弈模型分析

非零和博弈的典型模型包括囚徒困境、鹰鸽博弈等。以囚徒困境为例,两个嫌疑犯被单独审讯,如果两人都保持沉默,那么因证据不足,他们都会被轻判;如果一个人坦白而另一个人保持沉默,坦白的人将被释放,而沉默的人将被重判;如果两人都坦白,那么两人都将得到较重的刑罚。在囚徒困境中,理性的个人选择(背叛对方)导致了非理性的集体结果(两人都得到较重的刑罚)。

通过分析这些模型,我们可以发现非零和博弈中的策略选择往往涉及到对对手行为的预测和对合作可能性的评估。有效的策略可能需要结合博弈论的数学工具和心理学、社会学等其他学科的见解。

4.2 非零和博弈的均衡概念

4.2.1 混合策略均衡和相关算法

混合策略均衡是指参与者采用不同概率混合的策略以达到均衡状态。在非零和博弈中,混合策略均衡尤为重要,因为它允许参与者通过随机化自己的行为来避免被对手预测和利用。

实现混合策略均衡的算法通常涉及到概率计算和期望值的优化。在MATLAB中,可以使用 rand 函数生成随机数来模拟混合策略的选择,同时利用优化工具箱中的函数来求解使得期望收益最大化的策略。

4.2.2 精炼均衡概念及其求解方法

精炼均衡是对非零和博弈均衡概念的进一步细化和扩展,它试图排除那些不太可能发生的均衡解。例如,精炼纳什均衡(Perfect Bayesian Equilibrium)要求参与者在拥有不完全信息的情况下,也能够做出合理的策略选择。

求解精炼均衡的方法通常更为复杂,因为它需要考虑信息的不对称性以及参与者的信念更新。在MATLAB中,可以结合贝叶斯统计方法和博弈论工具箱来实现这一求解过程。

4.3 MATLAB求解非零和博弈案例

4.3.1 案例分析与模型建立

为了更好地理解非零和博弈的求解方法,我们可以考虑一个具体的案例:市场竞争。假设有两家公司生产类似的产品,他们可以选择价格战或者产品创新来增加市场份额。在这个案例中,我们可以通过建立一个简单的非零和博弈模型来分析。

模型建立的第一步是定义参与者的策略集合和收益函数。例如,我们可以设定策略为“价格战”或“产品创新”,收益为市场份额和利润。

4.3.2 MATLAB编程实现与结果分析

在MATLAB中,我们可以使用矩阵和数组来表示参与者的策略和收益。通过编写代码来模拟不同策略组合下的市场反应,并计算各自的收益。

% 定义策略
strategies = ["价格战", "产品创新"];

% 定义收益矩阵
payoffs = [ ...
    [4, 3],  % 价格战对价格战
    [2, 5],  % 价格战对产品创新
    [5, 2],  % 产品创新对价格战
    [3, 4]   % 产品创新对产品创新
];

% 分析不同策略组合下的收益
for i = 1:length(strategies)
    for j = 1:length(strategies)
        fprintf('当公司1采取%s,公司2采取%s时,各自的收益为:\n', strategies{i}, strategies{j});
        fprintf('公司1的收益:%d\n', payoffs(i, j));
        fprintf('公司2的收益:%d\n\n', payoffs(j, i));
    end
end

在上述代码中,我们定义了两种策略和一个收益矩阵。通过双重循环,我们可以模拟不同策略组合下的收益情况。这个简单的模型可以帮助我们理解非零和博弈中的策略选择和收益分析。

通过本章节的介绍,我们了解了非零和博弈的理论基础、均衡概念以及MATLAB在求解过程中的应用。在实际应用中,非零和博弈的模型可能会更加复杂,涉及更多的参与者和策略选择。MATLAB提供的工具箱和函数库为这些复杂问题的求解提供了强大的支持。

5. 扩展形式博弈的树状结构与子博弈精炼纳什均衡

扩展形式博弈(Extensive-Form Games)是博弈论中的一种模型,它通过树状结构来表示博弈的顺序和信息集。在扩展形式博弈中,玩家的行动是按照时间顺序发生的,每个玩家在特定的信息集下做出决策。这种形式的博弈有助于分析那些具有明显行动顺序和信息结构的复杂博弈场景。

5.1 扩展形式博弈的理论基础

5.1.1 扩展形式博弈的定义和特点

扩展形式博弈通常用来描述那些具有明确行动顺序的博弈,如棋类游戏或商业谈判。在这样的博弈中,玩家的决策不仅依赖于当前的状态,还可能依赖于之前的行动历史。

5.1.2 树状结构在扩展博弈中的应用

在扩展形式博弈中,树状结构是用来表示博弈过程的一种常用工具。树的每个节点代表博弈中的一个状态,而边代表玩家的一个可能行动。通过这种方式,可以清晰地展示博弈的顺序和各个玩家的信息集。

graph TD
    A[初始状态] --> B[玩家1的决策]
    B --> C[玩家2的决策]
    C --> D[终端状态1]
    C --> E[终端状态2]
    C --> F[终端状态3]

上图展示了扩展形式博弈的基本结构,玩家1和玩家2在不同阶段做出决策,最终达到不同的终端状态。

5.2 子博弈精炼纳什均衡

5.2.1 子博弈精炼的定义和意义

子博弈精炼(Subgame Perfect)纳什均衡是指在博弈的每个子博弈中,玩家的策略都是纳什均衡。这个概念是对于传统纳什均衡的扩展,它要求均衡策略在所有可能的博弈部分都是最优的。

5.2.2 子博弈精炼纳什均衡的求解方法

求解子博弈精炼纳什均衡通常涉及到逆向归纳法(Backward Induction),即从博弈的最后阶段开始分析,并逐步向前推导出每个玩家的最优策略。

5.3 MATLAB在扩展形式博弈中的应用

5.3.1 MATLAB对树状结构的表示与操作

在MATLAB中,可以使用数据结构和图形工具来表示和操作扩展形式博弈的树状结构。例如,可以使用邻接矩阵来表示博弈树,并利用MATLAB的图形函数来绘制博弈树。

5.3.2 子博弈精炼算法的MATLAB实现

MATLAB提供了一系列优化工具箱和编程结构,可以用来实现求解子博弈精炼纳什均衡的算法。通过编写MATLAB代码,可以自动化求解过程,并对不同博弈场景进行模拟和分析。

% 示例MATLAB代码:建立一个简单的博弈树
A = [0 1 0 0; 0 0 1 0; 0 0 0 1; 0 0 0 0]; % 邻接矩阵表示博弈树
G = digraph(A); % 创建有向图
plot(G, 'Layout', 'force'); % 绘制博弈树
title('扩展形式博弈树状结构');

上述代码展示了如何在MATLAB中创建和绘制一个简单的博弈树。通过这种方式,可以更直观地理解和分析扩展形式博弈的结构。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:博弈论是研究决策者互动的理论,MATLAB环境下提供了构建和分析博弈论模型的便利工具。本资源通过一系列MATLAB源代码,介绍了零和博弈、非零和博弈、扩展形式博弈、合作博弈、重复博弈和随机博弈等模型,并展示了如何在MATLAB中求解这些博弈问题。通过本课程设计,学习者可以理解博弈论的数学原理,并掌握实际应用和MATLAB代码编写技巧,为在经济学、社会科学和工程领域的深入研究提供帮助。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值