两个空间点直接距离投影公式_线积分与面积分(2):最初的公式

abe5558a544953c9a9099865ff2da3ad.png

这篇将会从最开始的公式开始说起。

在高数的范围中,线积分被限制在二维和三维空间,面积分则被限制在三维空间中。于是后面的分析也被局限在三维空间,而不扩展到n维空间。


正文

首先应当将线积分和面积分分类,了解接下来要面对的是什么,然后有一个清晰的思路。

线积分分为一类和二类,二者在高数的范围内又可以分为二维和三维:

当然,在这里略去了二维中求通量的的第二类线积分。为了说明的简单,这部分内容忽略了。

面积分也可以分为一类和二类,都是在三维空间下的:

可以看到,即使都是第二类的积分,但是二者也是有差别的。线积分处理的是向量场对切向量的点积,而面积分处理的是对法向量的点积。由此应该可以预知到,二者在处理上总还是会有点不同的。

现在上述表达式的积分一般来说还是“不可计算”的,还得转化成可以计算的微元。它们通常有两种转化方法:

1、化为已有变量(直接法):

2、化为参数式(参数法):

这三个公式便是最开始的公式,运用它们实际上就已经可以计算线面积分了。但是如果总是这样处理的话未免不觉得很麻烦。因此接下来需要从这几个公式开始逐步推导出更加方便实用的公式。

不过在此之前,应当稍微了解一下这些公式是怎么得来的,以及对这些公式进行一些解读。

(稍微先提一下,线积分中化为已有变量的公式实际上是有问题的。原因是一元定积分定义中乘的微元不是小区间的长度,而是自变量的增量

。这会导致这个公式的对线积分的描述与面积分不同:线积分可以由积分上下限表示方向,而面积分的积分上下限都是下限小于上限。)

对直接法的解读

首先应当知道公式

的由来。

接下来这部分的说明大部分在二维空间中进行,在必要的地方将会在三维空间说明。公式的由来以二维为例:

c1e1f3a7d9a586d81d07a468e36ef3b1.png
手绘…

以一小段的切线近似微元

,选择其到某一个轴投影,比如在这里或许是
轴(即“曲面”
)。易见有关系:

易见可以用以曲线的梯度和投影面的单位法向量的点积来表示

所以公式中的

所表示的为投影面
的单位法向量。通常来说,我们习惯在笛卡尔坐标系下处理问题。于是若是在二维空间,
选择投影到
轴上,则
,且
;在三维空间,
选择投影到
平面上,则
,且

并且可以发现,这个证明是很容易推广到三维中的面积分的,但是却不能轻易的推广到三维中的线积分。这个小瑕疵就留到后面再处理了。

实际上,到这里就可以开始具体的计算第一类线面积分了。

例:

的上半部分,求

,于是

选择投影到

轴,于是
。则

不过很快可以发现一个问题。如果对整个圆做线积分,很显然结果是0 。但是计算的时候却不能直接一次性的写出来:

此时

,则

一样的投影到

轴,则
,这样得到的积分仍然是:

这仍然只是得到了上半部分的结果。可以意识到,这个圆上下部分在

轴都有同样的的投影,这导致出现了这样的问题。应该分别处理上下部分。

不管怎么说,这个计算总是有问题的,并且在处理整圆的时候也是麻烦的。接下来就会逐渐解决这样的问题。

前面在解读

的时候,很自然的把
放在笛卡尔坐标系下。但是不止如此,在常见的坐标系中,二维里有极坐标系,三维里有柱坐标系和球坐标系,或者投影到的是笛卡尔坐标系下倾斜的平面等等。我们当然地总会希望这个公式更普适一点。

但是很快会发现这样的推广会出现一些问题。以二维的极坐标为例,当

投影到圆上(即
)时:

44d867f261ad1040dba602e852270803.png

选择投影到
的“曲面”(后面都将这么称呼)上。

则在

面上,
;在
面上,
。但是积分式依旧是:

对于同一个曲线,

是一样的;投影面都是圆,于是单位法向量都是
,也就是意味着
是一样的(显然如此)。并且曲线投影在不同
的曲面上,积分上下限
的取值都是一样的。但是整个积分式却有
在变化,于是这样便会求出两个不同的值:

选择不同的投影面就会得到不同的值,如果更极端的话,投影到

的曲面上,那么整个积分值就会是
。这显然是不可能的。

虽然夹角

不变,但是
却变了。可以想起来,在笛卡尔坐标系中,投影到
并无不同,三维空间中投影到
也是如此。但是在极坐标,或者球坐标下的
却有明显的伸缩。

可以认为,

描述的实际上是
的“倾斜程度”,而在不同的面上投影会有
不同的“伸缩程度”。因此投影的时候必须避免由投影面
的不同带来的伸缩的干扰。

于是投影时,可以这么处理:在笛卡尔坐标系里实际上是

处的一小块曲线
投影到
的投影面上。同样的
的一小块曲线应当投影在
的投影面上。这样就避免了伸缩。

ff1d917a4fc1aa5530840d2a897632b8.png

所以实际上积分应为:

可以看到,

中的
是在变化的,这就得使
处的微小曲面投影到同样
的曲面上。三维的球坐标下也应该是如此。

既然如此,实际上就可以用前面拉梅系数的知识来处理

了。运用前一篇的知识可以很清晰的写出各种正交坐标系下的投影面积微元

如投影到球坐标下的

曲面,则
;投影到
曲面,则
等等。

若以

转化的角度而不是投影的方式看,(三维中)
,本身就是与
投影所在的
的位置相关的。其关系就体现在拉梅系数中,因此也就不必考虑伸缩的问题,只需要简单的“写出”
的表达式即可。

当然,于此相对应的,

都应当用此坐标系下的基底来表示:

(以后会更为广泛的用

来替代之前的
等。即在变量上加上
表示其对应的单位法向量。)

因此在比较任意的正交曲线坐标系下,(三维中)公式

应该解读为:

重新来审视前面的例题:

例:

的上半部分,求

在极坐标下有:

,则
,且

选择投影到

曲面,则

即使是整个圆也非常简单,前面的操作依旧如此,只不过最后的积分上下限改成

罢了。这样得到的结果就是
,非常符合预期。

当然,现在只是刚开始对公式

的解读而已,虽然上面举的是第一类线积分的例子,但是这个公式却并不局限于第一类的积分。更具体的分析以及简化将在后面的笔记中详细展示。

对参数法的解读

对参数法公式

的由来就直接略掉了…二者在思路上是与直接法类似的。

在具体的解读上…似乎也没啥好说的,参数化之后算就完事了。各个变量的运算过程都十分清晰,也不会出什么幺蛾子。

不过需要注意的是,虽然很多时候参数化也就是“借用”其他坐标系下的表示曲面的方法,但是用直接法选择不同的坐标系和曲面的参数化还是很不是那么一回事。

不同的坐标表示相当于是整个空间的变化

,而参数化可以狭义的认为处理的只是曲面的径矢的表示
。而空间依然是笛卡尔坐标系下的表示。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值