python中多线程和多进程用来干嘛_Python中的多线程和多进程讲解说明

本文介绍了Python中如何使用multiprocessing模块创建多进程和多线程,包括进程池和线程池的运用。示例代码展示了如何通过Pool和ThreadPool进行任务调度,并解释了在RELP模式下可能遇到的问题。
摘要由CSDN通过智能技术生成

python中的多线程和多进程

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

如果使用multiprocessing模块是相当简单的,通过进程池或线程池来限定并发的数量。

创建多进程和多线程的语法是一样的,只需要将Pool替换为ThreadPool即可将多进程替换为多线程。

from multiprocessing import Pool  # 进程池

from multiprocessing.dummy import Pool as ThreadPool  # 线程池

def do_something(args):

# 注意,如果有多个参数,需要包装成一个tuple传入

param1,param2 = args

#获取当前线程的名字

name = multiprocessing.current_process().name

print('process=%s, p1=%d, p2=%d' %(name, param1,param2))

return n*2

def main():

# 注意,如果需要传入过个参数,需要整理成tuple格式

# task是一个可迭代对象,传入需要计算的参数

task=[(1,11),(2,22),(3,33),(4,44),(5,55),(6,66),(7,77)]

# 多进程示例

pool = Pool(4)  # 开4个核

result = pool.map(do_something, task)  # 将每个进程的结果组成list

pool.close()    # 关闭进程池(pool),使其不在接受新的任务

pool.join()  # 等待子进程结束

# 多线程示例

pool = ThreadPool(20)  # 20个线程

result = pool.map(do_something, task)

pool.close()

pool.join()

if __name__ == '__main__':

main()

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

有些资料说,要将多进程多线程pool.map写在if __name__ == '__main__'后面才能运行,后来发现不用。

但是,在RELP模式下肯定是不会成功的。

参考

小奋斗文章

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值