python中惩罚的代码_Python中的解释与动态调度惩罚

让我们看看这个python函数:def py_fun(i,N,step):

res=0.0

while i

res+=i

i+=step

return res

使用ipython魔法计时:

^{pr2}$

解释器将运行产生的字节码并对其进行解释。但是,我们可以通过使用cython来/cythonizing相同的代码来删除解释器:%load_ext Cython

%%cython

def cy_fun(i,N,step):

res=0.0

while i

res+=i

i+=step

return res

我们的速度提高了50%:In [13]: %timeit cy_fun(0.0,1.0e5,1.0)

100 loops, best of 3: 10.9 ms per loop

当我们查看生成的c代码时,我们发现在这里,在剥离样板代码之后,可以直接调用正确的函数,而不需要解释/调用ceval:static PyObject *__pyx_pf_4test_cy_fun(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_i, PyObject *__pyx_v_N, PyObject *__pyx_v_step) {

...

while (1) {

__pyx_t_1 = PyObject_RichCompare(__pyx_v_i, __pyx_v_N, Py_LT);

...

__pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_1);

...

if (!__pyx_t_2) break;

...

__pyx_t_1 = PyNumber_InPlaceAdd(__pyx_v_res, __pyx_v_i);

...

__pyx_t_1 = PyNumber_InPlaceAdd(__pyx_v_i, __pyx_v_step);

}

...

return __pyx_r;

}

但是,这个cython函数处理python对象,而不是c样式的float,因此在函数PyNumber_InPlaceAdd中,有必要弄清楚这些对象是什么(integer、float、其他什么?)真的是,并将此调用分派到正确的函数中。在

借助于cython,我们还可以消除这种调度的需要,直接调用float的乘法:%%cython

def c_fun(double i,double N, double step):

cdef double res=0.0

while i

res+=i

i+=step

return res

在这个版本中,i、N、step和{}是c风格的双精度函数,不再是python对象。因此,不再需要调用PyNumber_InPlaceAdd这样的分派函数,但我们可以直接为double调用+-operator:static PyObject *__pyx_pf_4test_c_fun(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_i, double __pyx_v_N, double __pyx_v_step) {

...

__pyx_v_res = 0.0;

...

while (1) {

__pyx_t_1 = ((__pyx_v_i < __pyx_v_N) != 0);

if (!__pyx_t_1) break;

__pyx_v_res = (__pyx_v_res + __pyx_v_i);

__pyx_v_i = (__pyx_v_i + __pyx_v_step);

}

...

return __pyx_r;

}

结果是:In [15]: %timeit c_fun(0.0,1.0e5,1.0)

10000 loops, best of 3: 148 µs per loop

现在,与没有解释器但有调度的版本相比,这一速度提高了近100。在

实际上,可以说,dispatch+allocation是这里的瓶颈(因为消除它会导致几乎100倍的加速)是一个谬论:解释程序负责50%以上的运行时间(15毫秒),而调度和分配“只”负责10毫秒

然而,在性能上,除了解释器和动态调度之外,还有更多的问题:Float是不可变的,所以每次它改变时都必须创建一个新的对象并在垃圾收集器中注册/注销。在

我们可以引入可变浮动,这些浮动是就地更改的,不需要注册/注销:%%cython

cdef class MutableFloat:

cdef double x

def __cinit__(self, x):

self.x=x

def __iadd__(self, MutableFloat other):

self.x=self.x+other.x

return self

def __lt__(MutableFloat self, MutableFloat other):

return self.x

def __gt__(MutableFloat self, MutableFloat other):

return self.x>other.x

def __repr__(self):

return str(self.x)

时间安排(现在我使用不同的机器,所以时间安排有点不同):def py_fun(i,N,step,acc):

while i

acc+=i

i+=step

return acc

%timeit py_fun(1.0, 5e5,1.0,0.0)

30.2 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each

%timeit cy_fun(1.0, 5e5,1.0,0.0)

16.9 ms ± 612 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit i,N,step,acc=MutableFloat(1.0),MutableFloat(5e5),MutableFloat(1

...: .0),MutableFloat(0.0); py_fun(i,N,step,acc)

23 ms ± 254 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit i,N,step,acc=MutableFloat(1.0),MutableFloat(5e5),MutableFloat(1

...: .0),MutableFloat(0.0); cy_fun(i,N,step,acc)

11 ms ± 66.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

不要忘记重新初始化i,因为它是可变的!结果immutable mutable

py_fun 30ms 23ms

cy_fun 17ms 11ms

因此,在有解释器的版本中,注册/注销float最多需要7毫秒(约20%),而在没有解释器的版本中则需要超过33%。在

现在看来:40%(13/30)的时间由口译员使用

多达33%的时间用于动态调度

最多20%的时间用于创建/删除临时对象

算术运算大约1%

另一个问题是数据的局部性,这一点对于内存带宽限制问题来说是显而易见的:如果数据一个接一个地线性地处理,那么现代缓存就可以很好地工作。对于在std::vector<>(或array.array)上循环是正确的,但是对于python列表的循环则不是这样,因为这个列表包含可以指向内存中任何位置的指针。在

考虑以下python脚本:#list.py

N=int(1e7)

lst=[0]*int(N)

for i in range(N):

lst[i]=i

print(sum(lst))

以及#byte

N=int(1e7)

b=bytearray(8*N)

m=memoryview(b).cast('L') #reinterpret as an array of unsigned longs

for i in range(N):

m[i]=i

print(sum(m))

它们都创建1e7整数,第一个版本是Python整数,第二个版本是连续放置在内存中的低级c-int。在

有趣的是,这些脚本会产生多少缓存未命中(D):valgrind tool=cachegrind python list.py

...

D1 misses: 33,964,276 ( 27,473,138 rd + 6,491,138 wr)

与valgrind tool=cachegrind python bytearray.py

...

D1 misses: 4,796,626 ( 2,140,357 rd + 2,656,269 wr)

这意味着python缓存中的8个整数会更多。部分原因是,python整数需要超过8个字节(可能是32个字节,即因子4)的内存和(也许,不是100%确定,因为相邻的整数是在一个又一个后面创建的,所以可能性很高,它们被存储在内存中的某个地方,需要进一步的调查)一些原因是,它们在内存中没有对齐bytearray的c-整数。在

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值