惩罚函数将有约束优化转化为无约束优化问题

惩罚函数也叫乘子法,求解带约束的非线性规划问题时,常用KKT条件列出满足条件的方程组,解方程组后即可得到最值点,但是满足KKT条件的方程组是一个非线性方程组,利用计算机求解很难给出通用算法,本篇介绍的惩罚函数也是利用KKT条件,惩罚函数的引入可以将一个约束非线性问题转化为无约束的非线性规划,而无约束线性规划可以用梯度法等实现求解,利用惩罚函数更方便我们制成计算机算法,在现代计算机算法中,凡涉及到求解最值,都会大量的运用惩罚函数或者借鉴惩罚函数思想。

    惩罚函数可以分为外点法和内点法,其中外点法更通用,可解决约束为等式和不等式情形,外点法对初始点也没有要求,可以任意取定义域内任意一点,外点法是真正的将问题转化为无约束问题;内点法初始点必须为可行区内一点,在约束比较复杂时,这个工作还是有难度的,且内点法只能解决不等式情形,对于约束为等式时,内点法使用上有所限制。

一、 外点法

    首先引入一个带等式约束的非线性规划问题:

min              f(x)

s.t.    hi(x)=0   i=1,2,3,...m

目标函数f(x)是非线性函数,约束条件为m个等式,上述问题中可以通过拉格朗日乘数法或KKT条件获得最值,而惩罚函数的解决方案是引入一个新的函数:

外点惩罚函数.gif                       

上式中F(x,σ)为惩罚函数,σ称为惩罚因子,惩罚想.gif称为惩罚项,F(x,σ)中参数x没有限制,可以取任意值。当x的取值在可行区内时,即x满足所有等式时,F(x,σ)=f(x);而x在可行区外时,由于惩罚项是平方和形式,这时F(x,σ)>f(x)。综上所述,惩罚函数F(x,σ)大于等于f(x),或者说F(x,σ)是目标函数f(x)的上界函数,两者的关系可以通过下图说明:

外点惩罚函数.png

x'点是原问题最小值点,即x'也是可行点,满足原问题所有等式条件,F(x,σ)与f(x)在该点函数值相等:F(x',σ)=f(x'),该点是需要间接通过惩罚函数求出的最值点。通过观察可以发现,F(x,σ)的最值F(x*)是小于f(x')的,这是由于F(x*)是F(x,σ)是在无约束情形下的最小值,F(x,σ)参数x可取值范围比原带约束的问题大的多(原问题x必须满足所有等式),极点x*本质是函数F(x,σ)全局最小值点,外点惩罚函数通过每轮增大参数σ,让每一轮x*逼近x',通过不断迭代计算,最终的x*便是近似的目标函数极值点x',这样一来,就实现了利用求解无约束最值得到另一个有约束问题最值。

    再来看约束为不等式的情形,如求以下函数f(x)的最小值:

 

min              f(x)

s.t.    gi(x)>=0   i=1,2,3,...n

约束为不等式时,惩罚函数是下面的形式:

外点惩罚函数不等式.gif                  ②

当惩罚函数参数x在可行区内时,惩罚项不等式惩罚项.gif,此时F(x,σ)=f(x);当x在可行区外时F(x,σ)>f(x),与约束为等式时一样,F(x,σ)的最值F(x*)在初始阶段是小于f(x')的,可以用等值线来解释这种特性:

等值线.png

g(x)>=0为不等式约束,F(x,σ)函数极值点x*在可行区外,等值线往g(x)方向移动时,函数值变大。在可行区内,F(x,σ)与f(x)等值线是一样的,代表两个函数在可行区内函数值相同,约束问题极值点x'一定是在可行区内,即上图虚线右侧;在虚线左侧F(x,σ)极值F(x*)初始时是小于f(x')的。惩罚函数解决不等式约束时,是通过调整参数σ,让x*逐渐接近可行区, 从而得到约束极值点x'。

    通过上面两种情形的分析,可以发现外点法是从可行区外慢慢接近边界,在接近的过程中计算每个阶段极值点,一旦到达可行区范围内,该极值点即为原来有约束非线性规划的极值点,接下来还有最后一个问题,为什么增大参数值σ可以让极值点x*接近可行区,以公式(2)为例,做适当变换可得:

sigma.gif

σ增大时,惩罚项将逐渐等于0,而惩罚项趋近于0代表F(x,σ)等值线整体逐渐向可行区移动。这里也可以看出,σ之所以叫惩罚因子是对惩罚函数的极值点不在可行区时,对惩罚函数进行相应的惩罚,同时,调整惩罚因子将移动惩罚函数极值点,这个动态的过程可以参考下图:

无标题.png

综合上面两种情形,当约束条件为不等式和等式混合时,有以下通用的惩罚函数形式:

通用惩罚函数形式.gif       

可以看到,不等式与等式公用一个惩罚因子σ,σ>0。根据上面的分析,接下来通过一段python代码实现外点惩罚函数,有以下带两个不等式、一个等式约束的非线性规划问题:

例题.png

示例最优解可用以通过图形观察出来,目标函数含义是圆点到可行区内最短距离的平方,等式3x+y-7.5=0与不等式约束所规定区域相交于A、B两点,其中在点B处(2.25,0.75)为最小值点:

示例图片2.png

import math
import sys
sys.setrecursionlimit(500)
errorRate=1e-4
stepLowerlimit=1e-5
#计算惩罚项
def punishfunc(sigma, x, y):
    punishvalue=(3 * x + y-7.5) ** 2
    if (2 * x - y < 0  ):
        punishvalue=punishvalue+  (2 * x - y) ** 2
    if ( x + y - 3 < 0):
        punishvalue = punishvalue + (x + y - 3) ** 2
    return punishvalue*sigma

#惩罚函数一阶导数
def P_firstderivative(stepx,x, y,gx,gy, sigma):
    d1=2*(gx *stepx-x) *gx+2*(gy*stepx-y)*gy+2*sigma*(-3*gx-gy)*(3*x-3*gx*stepx+y-gy*stepx-7.5)
    if (2 * x - y < 0):
        d1=d1+2*sigma*(-2*gx+gy)*(2*x-2*gx*stepx-y+gy*stepx)
    if(x + y - 3 < 0):
        d1 = d1 + 2*sigma*(-gx-gy)*(x-gx*stepx+y-gy*stepx-3)
    return   d1
#惩罚函数二阶导数
def P_secondderivative( x,y,gx,gy, sigma):
    d2=2*gx**2+2*gy**2+2*sigma*(-3*gx-gy)**2
    if (2 * x - y < 0):
        d2=d2+2*sigma*(-2*gx+gy)**2
    if (x + y - 3 < 0):
        d2 = d2 + 2*sigma*(-gx-gy)**2
    return     d2

#牛顿法
def newton(x, y,gx,gy, sigma):
    stepx,l,iterNum=0,1e-4,0
    dx_1=P_firstderivative(stepx,x, y,gx,gy, sigma )
    while abs( dx_1)>l:
        dx_1 = P_firstderivative(stepx, x, y, gx, gy, sigma)
        dx_2 = P_secondderivative(x,y,gx, gy, sigma)
        stepx=stepx-dx_1/dx_2
        iterNum = iterNum + 1
    return stepx

#求每次sigma对应的最小值,sigma每次递增,逐步逼近目标函数最值
def calmin(x, y, sigma,  counter):
    gradpart1_x, gradpart1_y, gradpart2_x, gradpart2_y = 0, 0, 0, 0
    if(2 * x - y<0   ):
        gradpart1_x = 2 * (2 * x - y) * 2 * sigma
        gradpart1_y = 2 * (2 * x - y) * -1 * sigma
    if ( x + y - 3 < 0):
        gradpart2_x = 2 * (x + y - 3) * sigma
        gradpart2_y = 2 * (x + y - 3) * sigma

    gradpart3_x = 2 * (3 * x + y - 7.5) * 3 * sigma
    gradpart3_y = 2 * (3 * x + y - 7.5) *  1 * sigma
    gradx =  2*x + gradpart1_x + gradpart2_x+gradpart3_x
    grady = 2*y + gradpart1_y + gradpart2_y+gradpart3_y
    distance = math.sqrt(gradx ** 2 + grady ** 2)
    gradx = gradx / distance
    grady = grady / distance
    #牛顿法一维搜索得到步长
    stepx=newton(x,y,gradx,grady,sigma)
    x = x - gradx * stepx
    y = y - grady * stepx
    punishvalue = punishfunc(sigma, x, y)
    value_end = x ** 2 + y ** 2    + punishvalue
    if (stepx <= stepLowerlimit    ):
        return x, y, value_end, punishvalue, sigma
    else:
        counter=counter+1
        return calmin(x, y, sigma,   counter)


def outpoint(x, y, sigma, c ):
    _x, _y, _v, _p=0,0,0,1
    while ( _p>errorRate   ):
        _x, _y, _v, _p, _sigma = calmin(x, y, sigma,  0)
        x=_x
        y=_y
        sigma = sigma * c
        pass
    value_end = x ** 2 + y ** 2 + punishfunc(sigma, x, y)
    print('最小值=%0.2f x=%0.2f y=%0.2f'%(value_end,x,y))


if __name__ == '__main__':
    sigma = 1#惩罚因子
    c = 10
    print('从外点开始:')
    outpoint(0, 0, sigma, c )# 外点测试
    print('-'*100)

    print('从内点开始:')
    outpoint(3 ,3, sigma, c )#内点测试

可以看到,通过增加判断条件,以上代码的初始点既可在可行区外,也可在可行区内,这两种情形得到的结果是一致的,运行结果如下:

运行结果.png

外点惩罚函数是通过outpoint()函数实现的,当惩罚项的数值小于一定值后退出循环,如惩罚项的数值未达到阈值则增大参数sigma ,再次求解惩罚函数的最小值;求解惩罚函数最小值是一个无约束最优解问题,这里使用的是梯度法,实现函数是def calmin(x, y, sigma,  counter),该函数在内部确定梯度方向后,由于是求最小值,取梯度反方向,再利用一维搜索法获得最佳的步长系数,关于一维搜索可参考一维搜索这篇文章,以上代码是利用牛顿法实现以一维搜索的。

余下文章部分请链接 惩罚函数详解

  • 14
    点赞
  • 86
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值