2025最新Python机器视觉实战:基于OpenCV与深度学习的多功能工业视觉检测系统(附完整代码)


2025最新Python机器视觉实战:基于OpenCV与深度学习的多功能工业视觉检测系统(附完整代码)

摘要:本文基于OpenCV与深度学习模型,实现一个多功能工业视觉检测系统,包含缺陷检测、尺寸测量、颜色识别、OCR文本识别、目标分类与数据可视化等功能。代码兼容Python 3.7+,功能丰富且经过稳定性测试,适合工业场景应用。所有依赖库均为最新版本,确保运行流畅。


一、环境准备

  1. 安装依赖库

    pip install opencv-python==4.9.0  # OpenCV库
    pip install torch==2.0.0         # PyTorch深度学习框架
    pip install torchvision==0.15.0  # 图像处理库
    pip install pytesseract==0.3.10  # OCR文本识别库
    pip install pandas==2.0.0        # 数据存储库
    pip install matplotlib==3.7.0    # 可视化库
    pip install scikit-image==0.21.0 # 图像处理工具库
    
  2. 下载预训练模型

  3. 配置Tesseract OCR

    • 安装Tesseract OCR引擎:Tesseract安装指南
    • 配置环境变量:确保pytesseract能找到Tesseract可执行文件。

二、代码实现与步骤解析

步骤1:加载模型与初始化参数

import cv2
import torch
import torchvision.transforms as transforms
from torchvision.models import resnet18
import pytesseract
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skimage.measure import label, regionprops

# 加载预训练ResNet18模型
model = resnet18(pretrained=False)
model.load_state_dict(torch.load("resnet18.pth"))
model.eval()

# 定义图像预处理
transform = transforms.Compose([
    transforms.ToPILImage(),
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 初始化全局变量
detection_results = []  # 检测结果存储
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值