机器学习算法实战系列:模型优化全攻略——从超参数调优到模型压缩的完整技术栈
引言
“同样的算法,为什么别人的模型效果比你好10倍?模型优化是机器学习从理论到实践的关键跃迁,掌握这些技术将让你的模型性能达到极致!”
模型优化是机器学习工程化过程中至关重要的环节,它直接决定了模型在实际应用中的表现。本文将全面讲解机器学习模型优化的完整技术体系,从基础的超参数调优到前沿的模型压缩技术,通过丰富的实战案例,带你掌握提升模型性能的关键方法论。
第一部分:超参数优化
1.1 超参数类型与影响
核心超参数
算法 | 关键超参数 | 典型影响 |
---|---|---|
神经网络 | 学习率、批大小、层数 | 收敛速度、泛化能力 |
随机森林 | 树数量、最大深度 | 偏差-方差权衡 |
SVM | 核函数、C参数 | 决策边界复杂度 |
1.2 网格搜索与随机搜索
网格搜索实现
from sklearn.model_selection import GridSearchCV
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [3, 5, None]
}
grid_search = GridSearchCV(RandomForestClassifier(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
print(f"最佳参数: {
grid_search.best_params_}")
随机搜索优势
- 更高维参数空间效率更高
- 更容易发现意外优秀组合
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint
param_dist = {
'n_estimators': randint(50, 500),
'max_depth': randint(3, 10)
}
random_search = RandomizedSearchCV(
RandomForestClassifier(),
param_distributions=param_dist,
n_iter=20,
cv=5
)
1.3 贝叶斯优化
基于GP的优化
from skopt import BayesSearchCV
opt = BayesSearchCV(
SVC(),
{
'C': (1e-6, 1e+6, 'log-uniform'),
'gamma': (1e-6, 1e+1, 'log-uniform')
},
n_iter=32,
cv=5
)
opt.fit(X_train, y_train)
超参数重要性分析
from skopt.plots import plot_objective
plot_objective(opt.optim