机器学习算法实战系列:模型优化全攻略——从超参数调优到模型压缩的完整技术栈

机器学习算法实战系列:模型优化全攻略——从超参数调优到模型压缩的完整技术栈

引言

“同样的算法,为什么别人的模型效果比你好10倍?模型优化是机器学习从理论到实践的关键跃迁,掌握这些技术将让你的模型性能达到极致!”

模型优化是机器学习工程化过程中至关重要的环节,它直接决定了模型在实际应用中的表现。本文将全面讲解机器学习模型优化的完整技术体系,从基础的超参数调优到前沿的模型压缩技术,通过丰富的实战案例,带你掌握提升模型性能的关键方法论。

第一部分:超参数优化

1.1 超参数类型与影响

核心超参数
算法 关键超参数 典型影响
神经网络 学习率、批大小、层数 收敛速度、泛化能力
随机森林 树数量、最大深度 偏差-方差权衡
SVM 核函数、C参数 决策边界复杂度

1.2 网格搜索与随机搜索

网格搜索实现
from sklearn.model_selection import GridSearchCV

param_grid = {
   
    'n_estimators': [50, 100, 200],
    'max_depth': [3, 5, None]
}
grid_search = GridSearchCV(RandomForestClassifier(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
print(f"最佳参数: {
     grid_search.best_params_}")
随机搜索优势
  • 更高维参数空间效率更高
  • 更容易发现意外优秀组合
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint

param_dist = {
   
    'n_estimators': randint(50, 500),
    'max_depth': randint(3, 10)
}
random_search = RandomizedSearchCV(
    RandomForestClassifier(), 
    param_distributions=param_dist,
    n_iter=20,
    cv=5
)

1.3 贝叶斯优化

基于GP的优化
from skopt import BayesSearchCV

opt = BayesSearchCV(
    SVC(),
    {
   
        'C': (1e-6, 1e+6, 'log-uniform'),
        'gamma': (1e-6, 1e+1, 'log-uniform')
    },
    n_iter=32,
    cv=5
)
opt.fit(X_train, y_train)
超参数重要性分析
from skopt.plots import plot_objective
plot_objective(opt.optim
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值