- 博客(4)
- 收藏
- 关注
转载 机器学习之集成学习——《机器学习》周志华著
文章目录1.谈谈集成学习的概念和思想。2.集成学习方法可以分为哪几类,并且分别阐述它们的特点。3.在集成学习中,阐述针对二分类问题的AdaBoost算法实现过程。思考AdaBoost算法在每一轮如何改变训练数据的权值或概率分布?4.随机森林与集成学习之间有什么样的关系?5. 用python实现基于单层决策树的AdaBoost算法智能控制与优化决策课题组制作。对应周志华《机器学习》第七章内容。...
2019-07-28 18:24:00 470
转载 机器学习之贝叶斯分类器——《机器学习》周志华著
1. 解释先验概率、后验概率、全概率公式、条件概率公式,结合实例说明贝叶斯公式,如何理解贝叶斯定理?i) 先验概率:用P(h)P(h)P(h)表示在没有训练数据前假设hhh拥有的初始概率。P(h)P(h)P(h)被称为hhh的先验概率。先验概率反映了关于hhh是一正确假设的机会的背景知识如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。ii) 后验概率:P(D)P(D)P(...
2019-07-23 19:35:19 245 1
转载 机器学习之特征选择——《机器学习》周志华著
1、简述特征选择的目的。特征选择的目的有两个:第一个是因为属性太多,在现实生活中经常遇到维数灾难问题,所以需要选出重要的特征,让后续学习过程仅需要在一部分特征上构建模型,即可以减少特征数量、降维,使模型泛化能力更强,减少过拟合。第二个是去除不相关特征可以降低学习任务的难度,增强对特征和特征值之间的理解。2、试比较特征选择与第十章介绍的降维方法的异同。特征选择和数据降维二者的目标都是使得特...
2019-07-21 11:25:02 409
转载 机器学习之强化学习——《机器学习》周志华著
1. 分析强化学习与监督学习的联系与差别i)强化学习一个引子:强化学习的中心思想,就是让智能体在环境里学习。每个行动会对应各自的奖励,智能体通过分析数据来学习,怎样的情况下应该做怎样的事情。其实,这样的学习过程和我们自然的经历非常相似。想象自己是个小孩子,第一次看到了火,然后走到了火边。你感受到了温暖。火是个好东西 (+1) 。然后就试着去摸。卧槽,这么烫 (-1) 。这就是人类...
2019-07-16 13:39:16 773
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人