动态规划【不同路径——有障碍物】

该问题是一个经典的动态规划问题,机器人在包含障碍物的网格中寻找从左上角到右下角的不同路径。当遇到障碍物时,路径数量不会增加。初始化dp数组,在没有障碍物的边界上赋值1,然后通过遍历网格,每一步更新dp[i][j]为左边和上边的dp值之和,除非当前位置是障碍物。
摘要由CSDN通过智能技术生成

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右
    示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/unique-paths-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

和无障碍物的不同路径相比,只是多了不能走的点,题目输入完整的二维数组,只要在二维数组值为1的位置跳过计算dp[i][j]就可以了。
需要注意的是,之前的规则种,只要是向右或者向下的一条直线,就肯定是一条路径(dp[i][0]和dp[0][j]),但是现在传入的二维数组中,值为1时,就表示有障碍物了,那dp[i][0]或者dp[0][j] 这个时候就考虑了。

代码

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;//只在没有障碍物的路径上赋值
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;//只在没有障碍物的路径上赋值
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 0) {//只在没有障碍物的情况下参与循环计算dp[i][j]
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
        }
        return dp[m - 1][n - 1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值