奇异值是数学概念,由奇异值分解得到。
假设有一张图片,像素的大小就是矩阵的大小,我们将这个像素矩阵记为A,对A进行奇异值分解,奇异值分解就是将矩阵分解成若干秩一矩阵之和。秩一矩阵指的是秩为一的矩阵。分解后的式子如下:
其中等式右边前面的每一项系数
σ
\sigma
σ就是奇异值,u和v分别表示列向量,我们将奇异值从大到小排列组合成一个新式子,即奇异值大的在前,奇异值小的在后。从前往后取的奇异值越多,图像也越清晰。若我们要存储很多高清图片,但是这些图片所占的内存又较大,我们可以通过舍去奇异值较小的一些项来保持清晰度较高的同时所占内存又小。
另一个应用是图像去噪,如果一张图片包含噪声,那么我们有理由相信是由奇异值较小的一些项引起的,所以当我们另奇异值较小的项为0时可以达到一定的去噪作用。