无权无向和加权网络的聚类系数

本文详细探讨了无权无向网络和加权网络中聚类系数的定义,包括从集合和几何角度的解释。在加权网络中,提出了三种不同的聚类系数计算方式,分别考虑了边的权重对聚类特性的影响。这些定义在无权网络的极限情况下保持一致,并具有相同的性质,如值域范围和特定条件下的等价性。聚类系数在社会网络分析和实际网络数据分析中具有重要应用。
摘要由CSDN通过智能技术生成

一、无权无向网络情形

1、聚类系数定义

我们可以用聚类系数刻画某个节点相邻的两个节点彼此也相邻的概率。
网络中一个度为k i _i i的节点i的聚类系数C i _i i定义为:
在这里插入图片描述
其中E i _i i是节点i的k i _i i个邻节点之间实际存在的边数,即节点i的k i _i i个邻节点之间实际存在的邻居对的数目。这里如果节点i只有一个邻节点或没有邻节点,即k i _i i=1或k i _i i=0,那么E i _i i=0,此时上式分子分母全为零,我们记C i _i i=0,显然0<=C i _i i<=1,并且C i _i i=0当且仅当节点i的任意两个邻节点都不互为邻居或者节点i至多只有一个邻节点。
一个网络的聚类系数C定义为网络中所有节点的聚类系数的平均值,即
在这里插入图片描述
显然有0<=C<=1,C=0当且仅当网络中所有节点的聚类系数都为零。C=1当且仅当网络中所有节点的聚类系数都为1,此时网络是全局耦合的,即网络中任意两个节点都相连。

2、聚类系数从集合角度定义

可以从另一个角度来阐述节点i的聚类系数的定义。E i _i i也可看做是以节点i为顶点之一的三角形的数目。因为节点i只有k i _i i个邻节点,包含节点i的三角形至多可能有k i _i i(k i _i i-1)/2个。如果用以节点i为中心的连通三元组表示包括节点i的3个节点并且至少存在从节点i到其他两个节点的两条边,那么以节点i为中心的连通三元组的数目实际上就是包含节点i的三角形的最大可能的数目,即k i _i i(k i _i i-1)/2。因此,我们可以给出与节点聚类系数定义等价的节点i的聚类系数的几何定义:
在这里插入图片描述
在这里插入图片描述
给定网络的邻接矩阵表示A=(a i j _{ij} ij N ∗ N _{N*N} NN,那么包含节点i的三角形的数目为:
在这里插入图片描述
因为a i j _{ij} ija j k _{jk} jka k i _{ki} ki=1时当且仅当节点i、j、k构成一个三角形,否则必有a i j _{ij} ija j k _{jk} jka k i _{ki} ki=0。
因此节点i的聚类系数可以表示为:
在这里插入图片描述
或者
在这里插入图片描述
一个网络的聚类系数C定义为网络中所有节点的聚类的平均值即
在这里插入图片描述
对C范围的讨论也同上。

3、从社会学角度看聚类系数

在这里插入图片描述
公式中的3是由于每个三角形对应于三个不同的连通三元组,它们分别以三角形的三个顶点为中心。
相对而言,聚类系数C的定义易于数值计算,因而被广泛用于实际网络数据分析,而聚类系数的社会写定义则更适用于解析研究。

二、加权网络情形

1、定义

人们提出了多种加权网络的聚类系数的定义,其区别主要在于到底应该如何定量刻画边的权值对聚类特性的影响。
给定一个加权网络及其邻接矩阵A=(a i j _{ij} ij)和非负的权值矩阵W= ω \omega ω i j _{ij} ij),直观上看,我们有无权网络的节点聚类系数定义的加权形式:
在这里插入图片描述
现在的问题是如何根据加权网络的非负权值矩阵W= ω \omega ω i j _{ij} ij)来合理确定 ω \omega ω i j k _{ijk} ijk

2、 ω \omega ω i j k _{ijk} ijk的限制条件

ω \omega ω i j k _{ijk} ijk的限制条件:
(1)当节点i、j和k不构成一个三角形时, ω \omega ω i j k _{ijk} ijk可以任意取值(故不妨取为 ω \omega ω i j k _{ijk} ijk =0)。这是因为a i j _{ij} ija j k _{jk} jka k i _{ki} ki=1当且仅当节点i、j和k构成一个三角形,否则必有a i j _{ij} ija j k _{jk} jka k i _{ki} ki =0。
(2)在无权网络的特殊情形,上述加权形式的定义应该退化为无权网络中节点的聚类系数定义。在此情形,当节点i、j和k构成一个三角形时应该有 ω \omega ω i j k _{ijk} ijk =1。
(3)为了保证 C i ~ \widetilde{Ci} Ci ∈ \in [0,1],应该有 ω \omega ω i j k _{ijk} ijk ∈ \in [0,1],这就意味着不管权值矩阵W如何选取,总有
在这里插入图片描述

3、 ω \omega ω i j k _{ijk} ijk的取法

3.1 取法1

ω \omega ω i j k _{ijk} ijk取为节点i与它的两个邻节点j和k之间的两条边的权值的归一化的平均值,即
在这里插入图片描述
其中< ω \omega ω i _i i>是以节点i为一个端点的所有边的权值的平均值。即
在这里插入图片描述

把所选取的 ω \omega ω i j k _{ijk} ijk的值带入到聚类系数的加权形式中,可得
在这里插入图片描述
这一定义考虑了节点i与其邻节点之间的边的权值的影响,但是没有考虑节点i的两个邻节点之间的边(也称为外边)的权值的影响。对于无权网络,当节点i、j和k构成一个三角形时,有 ω \omega ω i j k _{ijk} ijk=1,上述定义即退化为无权网络的节点聚类系数定义。
注意到结点i得强度s i _i i满足
在这里插入图片描述
所以聚类系数加权形式的定义也可以写为:
在这里插入图片描述

3.2 取法2

ω \omega ω i j k _{ijk} ijk取为节点i与它的两个相邻节点j和k组成的三角形的三条边的归一化权值的几何平均,即
在这里插入图片描述
其中 ω ^ i j ∈ \widehat{\omega}_{ij}\in ω ij[0.1]为如下定义的归一化权值:
在这里插入图片描述

ω \omega ω i j k _{ijk} ijk所取的值带入到聚类系数的加权形式中,即得到加权网络中结点i的聚类系数的另一种定义:
在这里插入图片描述
如果把两个结点之间没有变等价的定义为两个结点之间的边的权值为0,那么上式可以等价为:
在这里插入图片描述
该式可进一步写为:
在这里插入图片描述

其中C i _i i是把该网络看作无权网络时结点i的聚类系数, I i ˉ \bar{I_i} Iiˉ是包含结点i的三角形的归一化平均密度:
在这里插入图片描述
这里E i _i i是包含结点i的三角形数目,即
在这里插入图片描述
从无权无向网络从几何角度定义聚类系数来看,节点i的聚类系数等于包含节点i的三角形数目除以包含节点i的三元组数目。基于这一定义的推广,可以得到加权网络中聚类系数的第三种定义:
在这里插入图片描述
分子即为包含节点i的三角形数目E i _i i的加权化形式,分母则为分子可能的上界。从而保证 C ~ i ( 3 ) ∈ \widetilde{C}_i^{(3)}\in C i(3)[0,1] ,上式也可以写为:
在这里插入图片描述

4、基于 ω \omega ω i j k _{ijk} ijk取值不同的三种定义的特征

(1)当加权网络退化为无权网络时,上述几种定义都是等价的。即有 C ~ i ( 1 ) \widetilde{C}_i^{(1)} C i(1)= C ~ i ( 2 ) \widetilde{C}_i^{(2)} C i(2)= C ~ i ( 3 ) \widetilde{C}_i^{(3)} C i(3)=C i _i i
(2)与无权网络中节点i的聚类系数C i _i i相同,有 C ~ i ( l ) ∈ \widetilde{C}_i^{(l)}\in C i(l)[0,1],l=1,2,3。
(3)与C i _i i相同 C ~ i ( l ) \widetilde{C}_i^{(l)} C i(l)=0当且仅当不存在包含节点i的三角形。
(4)与C i _i i相同 C ~ i ( l ) \widetilde{C}_i^{(l)} C i(l)=1的充要条件是节点i的任意两个邻节点都互为邻居。但是,此条件只是 C ~ i ( 2 ) \widetilde{C}_i^{(2)} C i(2)= C ~ i ( 3 ) \widetilde{C}_i^{(3)} C i(3)=1的必要条件,因为 C ~ i ( 2 ) \widetilde{C}_i^{(2)} C i(2)=1还要求包含节点i的所有三角形的边的权值都相同。 C ~ i ( 3 ) \widetilde{C}_i^{(3)} C i(3)=1则要求包含节点i的每一个三角形的每一条外边的权值都相同且为最大值,而与节点i相连的边的权值无关。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值