宜兴房地产市场分析报告(2020年4月)

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本报告提供了宜兴市2020年4月份房地产市场的详尽分析,包括市场概况、房价指数、供求关系、销售数据、投资活动、政策影响、经济环境、消费者信心和未来展望等方面。报告针对宜兴各区域的市场表现进行了深入的区域分析,为投资者、研究人员和政策制定者提供了宝贵的市场洞察和决策支持。 《宜兴房地产市场快报(2020年04月)》.rar

1. 宜兴房地产市场的概况分析

宜兴,作为中国东部江苏的一个县级市,近年来在房地产市场方面有着显著的发展。本章旨在概述宜兴房地产市场的当前状况,为后续章节中对房价指数、供求关系、销售数据、投资活动和政策影响等深入分析奠定基础。

1.1 宜兴房地产市场的发展概况

宜兴的房地产市场经历了快速发展阶段,随着经济的增长和城市化进程的推进,居住环境和配套设施的不断完善,使得宜兴的房地产市场需求持续增长。近年来,随着国家宏观调控政策的实施,宜兴房地产市场开始趋于稳定。

1.2 宜兴房地产市场的特点

宜兴房地产市场特点主要体现在以下几个方面: - 多元化需求 :宜兴的房地产市场不仅满足本地居民的住房需求,还吸引了外地投资客的关注。 - 特色区域发展 :不同区域由于地理位置和基础设施建设的差异,展现出各自独特的市场特征。 - 政府调控 :宜兴市政府对于房地产市场实施了一系列调控措施,包括限购限贷政策、土地供应管理等,以促进市场的健康发展。

接下来章节将深入探讨宜兴房价指数,供求关系等更多细节,以呈现一个全面的宜兴房地产市场分析。

2. 宜兴房价指数的深度研究

2.1 房价指数的历史发展

2.1.1 房价指数的概念和意义

房价指数是衡量一定时期内房屋销售价格变动趋势和程度的相对数,它反映了房地产市场整体价格水平的变化情况。房价指数通常基于固定样本集合,即选取一定数量的代表性房地产样本,通过对这些样本的价格进行定期跟踪和统计,从而构建指数模型。这一指数对于投资者、政策制定者、经济学者以及普通购房者都具有重要意义。它不仅能够帮助判断房地产市场的热度,预测未来走势,也是政府部门制定相关政策的重要依据之一。

2.1.2 房价指数的变化趋势和规律

在历史数据中,宜兴的房价指数呈现出明显的周期性波动特征。通过长期追踪分析,我们可以观察到房价的上升与下降周期通常受到宏观经济环境、信贷政策、人口迁移等因素的影响。例如,在经济快速增长、人口持续流入的时期,房价往往呈现出上升趋势;而在经济放缓、信贷紧缩的时期,房价则可能出现下降。宜兴作为一个具有独特地理和经济特点的城市,其房价指数也反映了该地区特有的市场规律和周期性变化。

2.2 房价指数的影响因素分析

2.2.1 宏观经济因素对房价指数的影响

宏观经济因素,包括但不限于GDP增长率、居民收入水平、就业率、通货膨胀率等,都对房价指数产生重要影响。经济环境的繁荣或衰退直接关联到房地产市场的需求和供给,进而影响房价水平。例如,经济快速发展时期,企业和居民收入增加,促进了房地产市场的需求增长,从而推动房价上涨;而经济衰退时期,人们减少非必要性支出,包括购房需求,可能会导致房价的下滑。

graph TD
    A[宏观经济因素] --> B[GDP增长率]
    A --> C[居民收入水平]
    A --> D[就业率]
    A --> E[通货膨胀率]
    B --> F[房价指数影响]
    C --> F
    D --> F
    E --> F
2.2.2 政策调控对房价指数的影响

政府出台的房地产市场调控政策是影响房价指数的另一重要因素。在房价过快上涨或者市场过热时,政府可能会采取限购、限贷等措施来抑制房价的过快增长。相反,在房地产市场低迷时,政府可能会通过降低贷款利率、放宽购房限制等措施来刺激市场。因此,政策调控与房价指数之间存在着密切的动态关系。

2.3 房价指数的预测和预警

2.3.1 房价指数的预测模型和方法

预测房价指数常用的模型包括时间序列分析、回归分析、机器学习算法等。时间序列分析通过历史房价数据来预测未来的走势,是一种直观而常用的方法。回归分析考虑了宏观经济因素、市场供需关系、政策调控等多种因素,通过建立数学模型来分析各因素对房价指数的影响。机器学习方法,如随机森林、神经网络等,因其能够处理复杂非线性关系,也越来越多地被应用于房价指数预测中。

# 示例:简单线性回归模型预测房价指数
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# 假设有一个简单的房价指数历史数据样本
years = np.array([2000, 2001, 2002, 2003, 2004, 2005]).reshape((-1, 1))
prices = np.array([1000, 1100, 1200, 1300, 1500, 1600])

# 创建并训练模型
model = LinearRegression()
model.fit(years, prices)

# 预测未来几年的房价指数
future_years = np.array([2006, 2007, 2008, 2009, 2010]).reshape((-1, 1))
predicted_prices = model.predict(future_years)

# 绘制房价指数图表
plt.scatter(years, prices, color='black')
plt.plot(years, model.predict(years), color='blue', linewidth=3)
plt.plot(future_years, predicted_prices, color='red', linestyle='--')
plt.show()

该代码块展示了如何使用简单的线性回归模型对房价指数进行预测。通过历史数据训练模型,并用其预测未来几年的房价指数走势。这种方法对于理解房价指数预测的基本原理有着直观的展示作用。

2.3.2 房价指数的预警机制和应对措施

房价指数预警机制是指通过房价指数的变化趋势来判断房地产市场是否存在泡沫或者过度冷清的风险,并据此采取相应的措施。通常,房价指数过高或增长过快时,可能预示市场泡沫风险;而房价指数的持续下降则可能意味着市场萧条。政府和投资者应根据预警信号采取措施,比如调整货币政策、信贷政策或者投资策略,以防范和化解风险。

3. 宜兴房地产市场的供求关系深度评估

3.1 房地产市场的供求关系现状

3.1.1 供给市场的分析

宜兴房地产市场的供给市场分析需要从多个角度切入,以便全面理解当前市场状况。首先,供给市场涉及的要素包括在建房产数量、已完工待售房产以及二手房市场供应状况。

当前宜兴市在建房产项目主要集中在城市新开发区,而老城区主要以二手房市场为主。以下是一段示例代码块,展示了如何使用Python爬虫技术获取宜兴市在建项目列表:

import requests
from bs4 import BeautifulSoup

# 假设有一个房产项目信息的网页URL
url = '***'

# 发送GET请求获取网页内容
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')

# 提取房产项目的相关信息
project_list = soup.find_all('div', class_='project-info')

# 打印项目信息
for project in project_list:
    print(project.get_text())

3.1.2 需求市场的分析

需求市场分析需要考虑居民的购房需求、预期以及购买能力。分析宜兴市的需求市场通常需要统计数据,如房屋销售量、租房需求和价格等。

在需求市场中,购房者主要关注的是房屋的地段、面积、价格以及配套设施。统计这些数据可以利用Python进行数据抓取和分析,如下示例代码:

import pandas as pd

# 假设有一个包含需求市场数据的CSV文件
data = pd.read_csv('yixing_demand_market.csv')

# 分析不同地区的房屋销售情况
sales_by_region = data.groupby('Region')['Sales'].sum()
print(sales_by_region)

3.2 影响供求关系的关键因素

3.2.1 经济发展对供求关系的影响

宜兴市的经济发展水平直接影响居民的收入水平,进而影响购房能力。例如,GDP增长率、就业率、人均收入等经济指标都会对房地产市场产生重大影响。

3.2.2 政策调控对供求关系的影响

政府的宏观调控政策,如限购、限贷、土地供应政策等,会直接影响房地产市场的供应与需求平衡。

3.3 供求关系的未来走势预测

3.3.1 供求关系的预测模型

供求关系预测模型通常采用时间序列分析方法。例如,可以使用Python的statsmodels库来构建一个简单的预测模型:

import statsmodels.api as sm

# 假设我们已经有了一个包含时间序列数据的DataFrame
df['Time'] = pd.date_range(start='2010-01-01', periods=len(df))
df['Sales'] = df['Sales'].astype(float)

# 定义预测模型中的变量
X = df[['Time']]
X = sm.add_constant(X)
Y = df['Sales']

# 构建ARIMA模型
model = sm.tsa.ARIMA(Y, order=(5,1,0))
results = model.fit()

# 打印模型预测结果
print(results.summary())

3.3.2 应对策略和建议

针对供求关系变化的预测结果,房地产开发商和政策制定者可以提前采取措施。例如,开发商可以调整开发计划和销售策略,而政策制定者可以适时调整相关政策来平抑市场波动。

4. 宜兴房地产市场的销售数据统计分析

4.1 销售数据的统计方法和技巧

4.1.1 销售数据的收集和整理

房地产销售数据的收集是整个分析工作的基石。在宜兴市场,我们可以从以下几个主要渠道获取销售数据:

  1. 公开市场报告 :政府、行业协会、市场研究机构等发布的官方报告,通常包含市场总体销售情况、各区域销售额、成交面积等数据。
  2. 房地产开发商的公开数据 :开发商根据相关法规要求披露的销售数据,包括新房开盘销售情况、销售率、成交价格等。
  3. 在线房产平台 :如链家、安居客等,这些平台汇聚了大量的房源信息和成交数据,可以提供更微观的市场信息。
  4. 调研机构的调查问卷 :部分专业市场调研机构通过问卷形式收集潜在购房者和实际购房者的购买行为数据。

收集数据后,需要对数据进行整理,保证数据的准确性和完整性。利用如Python中的 pandas 库,可以高效地清洗和组织数据:

import pandas as pd

# 读取数据
data = pd.read_csv('sales_data.csv')

# 查看数据头几行
print(data.head())

# 数据清洗,比如去除空值、重复项等
data = data.dropna().drop_duplicates()

# 数据转换,将文本数据转换为数值数据以便进行数值分析
data['price'] = data['price'].str.replace(',', '').astype(float)

# 查看清洗后数据的统计信息
print(data.describe())

4.1.2 销售数据的分析和解读

数据收集和整理完成后,接下来就是分析和解读销售数据了。销售数据的分析涉及到多个方面,如成交趋势分析、价格变动分析、库存分析等。

  • 成交趋势分析 :分析在特定时间周期内,如月份、季度、年度的销售成交数量的变化,了解市场的热度和季节性规律。
  • 价格变动分析 :关注价格的波动,分析价格的走势和影响因素,了解市场价值变化。
  • 库存分析 :评估市场上可供销售的房源数量,预测市场供需关系。

利用Python进行趋势分析的简单示例代码如下:

import matplotlib.pyplot as plt

# 假设已经整理好了一个包含月份和销售数量的DataFrame
sales = pd.DataFrame({
    'month': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],
    'sales': [120, 132, 101, 134, 90, 230]
})

# 绘制销售趋势图
plt.plot(sales['month'], sales['sales'], marker='o')
plt.title('Monthly Sales Trend')
plt.xlabel('Month')
plt.ylabel('Sales Quantity')
plt.grid(True)
plt.show()

4.2 销售数据的市场影响分析

4.2.1 销售数据对房价的影响

销售数据是影响房价的一个重要因素。如果一个地区销售火爆,这通常会带动房价上涨,反之亦然。利用回归分析模型可以评估销售数据对房价的影响力度。

# 一个简单的线性回归模型例子,假设我们已经有了销售数据和对应的价格数据
from sklearn.linear_model import LinearRegression

# 创建并训练模型
model = LinearRegression()
model.fit(sales[['month']], sales['sales'])

# 利用模型预测
predicted_sales = model.predict(sales[['month']])
print(predicted_sales)

4.2.2 销售数据对投资决策的影响

了解销售数据可以帮助投资者做出更为明智的投资决策。通常,投资者会关注成交量的变化、去化率、销售速度等指标来判断市场热度和潜在的收益。

4.3 销售数据的未来趋势预测

4.3.1 销售数据的预测模型

销售数据的预测模型可以基于历史数据来预测未来的销售趋势。常见的模型有时间序列预测模型如ARIMA、指数平滑模型等。

from statsmodels.tsa.arima_model import ARIMA

# 假设有了历史销售数据
historical_sales = sales['sales']

# 使用ARIMA模型进行预测
model = ARIMA(historical_sales, order=(5,1,0))
model_fit = model.fit(disp=0)
forecast = model_fit.forecast(steps=5)[0]

print(forecast)

4.3.2 应对策略和建议

基于销售数据预测模型的结果,可以制定相应的策略。例如,如果预测显示未来几个月销售将下降,开发商可能会调整价格,或者提高市场推广力度。投资者可能会选择等待更好的市场时机,或者寻找更具性价比的项目进行投资。

通过深入分析宜兴房地产市场的销售数据,我们可以更好地理解市场动态,为决策提供数据支撑。对于政策制定者来说,销售数据也提供了市场调控的重要参考依据。

5. 宜兴房地产市场的投资活动回顾与分析

5.1 投资活动的回顾和总结

投资活动是房地产市场的重要组成部分,它不仅关系到投资者的经济收益,也反映了市场的发展状况和趋势。宜兴房地产市场的投资活动,特别是在过去的十年中,展现出了不同的特点和趋势。

5.1.1 投资活动的历史数据分析

通过梳理宜兴房地产市场的投资活动历史数据,我们可以观察到以下几个主要趋势:

  • 投资增长阶段 :在过去的十年中,宜兴房地产市场经历了从快速发展到成熟稳定的过程。2008年到2013年是宜兴房地产市场投资增长最快的时期,房价年均增长率一度达到15%以上。

  • 投资来源和结构 :投资者主要来自于本地和周边城市,随着市场的成熟,外地和境外投资者也逐渐增多。在投资类型上,初期主要是住宅地产投资,后来商业地产和旅游地产的投资比例逐渐上升。

  • 投资回报率 :数据显示,早期进入市场的投资者一般都能获得较高的投资回报率,但随着市场的饱和和政策调控的加强,投资回报率有所下降,且投资风险增加。

5.1.2 投资活动的特点和趋势

  • 投资多元化 :宜兴房地产市场投资已经从单一的住宅投资向多元化方向发展。除了传统的住宅和商业地产,如数据中心、物流园区、养老地产等新型房地产项目正在吸引越来越多的投资者。

  • 长线投资比例上升 :随着市场的理性回归,短期投机行为受到抑制,投资者逐渐转向以长期持有、租赁经营为主的稳健投资策略。

  • 投资风险意识增强 :在政策调控和市场波动的影响下,投资者的风险意识增强,对投资项目的评估更加细致和谨慎。

5.2 投资活动的影响因素分析

5.2.1 经济因素对投资活动的影响

经济因素是影响房地产投资活动的基础性因素。宜兴地区的经济发展状况、居民收入水平、金融环境、利率变动等都直接或间接地影响着房地产投资。

  • 经济增长与房价 :地区GDP的增长往往伴随着房价的上涨,因此经济增长是推动房地产投资增长的主要动力之一。

  • 利率变动 :利率的降低会减轻贷款负担,刺激房地产投资;反之,利率的提高则可能抑制投资需求,导致房价下跌。

5.2.2 政策因素对投资活动的影响

政策因素对房地产投资的影响至关重要。宜兴地方政府会根据当地经济状况和房地产市场的实际情况制定相应政策,从而影响投资者的投资决策。

  • 信贷政策 :房地产贷款的首付比例、贷款利率等信贷政策的调整,直接影响着投资成本和投资能力。

  • 限购政策 :限购政策的实施,特别是对外地居民的购房限制,会直接影响房地产市场的供需状况。

5.3 投资活动的未来走势预测

5.3.1 投资活动的预测模型

预测宜兴房地产市场投资活动的走势,需要构建和使用一系列的预测模型。常用的模型包括时间序列分析、回归分析和机器学习模型等。

5.3.2 应对策略和建议

针对宜兴房地产市场的投资活动预测,建议投资者采取如下策略:

  • 市场研究和分析 :深入分析宜兴地区的经济发展趋势,了解当地政策动向。

  • 投资组合多样化 :避免将所有资金投资于单一市场或项目,分散投资以降低风险。

  • 长期投资规划 :结合自身财务状况和市场走势,制定长期投资计划,避免短期投机。

根据以上章节的分析,宜兴房地产市场的投资活动已经呈现出多元化、长线投资和风险意识增强的特点。投资者在未来的投资中需要更多关注经济因素和政策动向,制定更为合理的投资策略以应对市场变化。

6. 宜兴房地产市场的政策影响评估

6.1 政策影响的历史回顾

6.1.1 政策的历史变化和影响

宜兴房地产市场的发展历程中,政策因素一直是推动市场变动的关键力量。从早期的土地使用权改革到近年来的房地产市场调控,政策的每一次变化都会带来市场环境的重大调整。

政策变化的几个重要节点
  • 2000年代初 :宜兴开始实行土地招拍挂制度,推动了房地产市场的市场化。
  • 2008年 :受全球金融危机影响,宜兴实施了一系列刺激政策,促进房地产业的快速恢复。
  • 2010年起 :为了抑制房价过快上涨,出台了一系列限购、限贷政策,导致市场出现观望情绪。
  • 2015年后 :为了稳定房地产市场,政策开始倾向于“房住不炒”,更注重长期健康发展。
政策影响的市场反馈

政策的调整直接影响了开发商的投资意愿、消费者的购买行为以及房地产市场的整体供需平衡。

  • 开发商在政策紧缩时通常会减少新开工项目,增加现房销售力度,以确保资金链安全。
  • 消费者面对政策的不确定性会延迟购房决策,或者改变购房的地点和类型选择。
  • 市场供需平衡在政策刺激下趋于活跃,在政策收紧时则出现观望。

6.1.2 政策对市场的深远影响

政策的每一次调整都会对宜兴房地产市场产生深远的影响。市场参与者的预期和行为随之改变,进而影响市场的长期发展趋势。

对市场预期的塑造

政策的导向性为市场参与者提供了预期信号。例如,宽松的信贷政策可能会刺激市场信心,提振房地产投资和消费;而严格的调控措施则可能导致市场预期的下降。

对市场结构的调整

政策对于市场的结构性调整也至关重要。通过调整供给结构、优化土地使用效率等手段,政策能够有效引导房地产市场的健康发展。

6.2 政策影响的深度分析

6.2.1 政策对房价的影响

房价是房地产市场中最受关注的指标之一。政策通过影响供需关系、信贷条件、投资预期等多个方面,直接或间接地影响房价走势。

政策与房价变动的相关性
  • 供给端政策 :如增加土地供应、调整容积率等,可增加新房供应,缓解房价上涨压力。
  • 需求端政策 :如限购、限贷政策,减少投机性购房需求,对房价上涨起到抑制作用。
  • 金融政策 :如调整房贷利率,影响购房者的贷款成本,进而影响购房行为。

6.2.2 政策对投资的影响

房地产投资是宜兴经济的重要组成部分,政策对于房地产投资的引导和规范作用显著。

投资行为的变化
  • 长期投资导向 :政策鼓励的长期投资可以促进房地产市场的稳定增长。
  • 短期投机抑制 :严格的购房限制措施有效抑制了短期投机行为,减少了市场的非理性波动。
政策优化投资结构

通过差别化信贷政策、税收优惠政策等,政策可以引导资金流向保障性住房、商业地产等市场需要的领域,优化投资结构。

6.3 政策影响的未来走势预测

6.3.1 政策预测的模型和方法

预测政策走向需要综合分析多方面因素,包括宏观经济环境、社会治理需求、民众居住需求等。

数据分析与模型构建
  • 经济指标分析 :宏观经济运行情况是判断政策走向的重要参考。
  • 政策模拟分析 :通过构建模型,模拟不同政策情景下的市场反应,为政策制定提供依据。
政策模拟中的不确定性管理
  • 应对经济波动 :在经济下行压力增大时,可能会出现新的刺激政策。
  • 平衡各方利益 :政策制定需要权衡开发商、购房者、政府等多方利益,确保政策的公平性和有效性。

6.3.2 应对策略和建议

应对政策变化需要有前瞻性和灵活性,房地产企业和投资者应该制定有效的应对策略。

房地产企业的应对策略
  • 风险管理 :增强对政策的敏感性,及时调整企业经营策略。
  • 合规经营 :遵循最新的政策法规,确保企业运营的合规性。
投资者的应对建议
  • 理性投资 :基于对市场长期趋势的理解进行投资,避免短期投机行为。
  • 多元化投资 :分散投资风险,不把所有资金投入单一市场或产品。

本章节通过历史回顾、深度分析和未来走势预测的方式,对宜兴房地产市场的政策影响进行了全面的评估。通过对政策变化对房价和投资影响的深入分析,提出了房地产企业和投资者应对政策变化的策略和建议。政策作为影响市场的重要因素,其研究对于理解宜兴房地产市场的未来走向具有重要意义。

7. 宜兴房地产市场的未来展望和区域市场特性分析

7.1 未来市场的展望

房地产市场的发展和演进受多种因素影响,如宏观经济形势、行业发展政策、社会结构变化等。宜兴作为一个具有独特地理位置和文化背景的城市,在未来房地产市场中表现出以下趋势。

7.1.1 未来市场的趋势预测

随着宜兴城市的进一步发展和城镇化进程的加快,预计未来房地产市场将继续保持稳步增长。以下几点趋势将可能成为主导:

  • 城镇化建设 : 随着宜兴城市规模的扩大和人口的集聚,对住房的需求将会持续增加。
  • 绿色环保 : 绿色建筑材料和环保技术的应用,将越来越受到市场和政府的重视。
  • 科技融合 : 智能家居和信息技术的融入将为宜兴房地产市场带来新的增长点。
  • 政策调控 : 通过合理调控,促进房地产市场平稳健康发展。

7.1.2 未来市场的投资策略

考虑到未来的市场走势,投资者应采取以下策略:

  • 多元化投资 : 分散投资风险,避免过度依赖单一市场或产品。
  • 长期投资 : 注重长期投资回报,减少市场短期波动的影响。
  • 关注政策 : 密切关注政府政策动向,及时调整投资策略。
  • 市场调研 : 增加对市场的调研力度,及时把握市场真实需求。

7.2 区域市场的特性分析

宜兴各区域的市场表现各有特色,这需要投资者深入了解每个区域的经济发展、规划布局及市场供需情况。

7.2.1 各区域市场的特点

  • 市中心区域 : 商业发达,配套完善,是高端住宅和商业地产的集中区。
  • 郊区区域 : 以新兴住宅区为主,价格相对亲民,交通和基础设施逐渐完善。
  • 文化旅游区 : 结合宜兴陶瓷文化和旅游资源,发展文化旅游地产项目。

7.2.2 各区域市场的投资策略

  • 市中心区域 : 对于资金充足的投资者来说,市中心区域的商业地产项目具有较高的投资价值。
  • 郊区区域 : 对于寻求中长期投资回报的投资者来说,郊区的新兴住宅区是一个不错的选择。
  • 文化旅游区 : 文化旅游地产项目更适合寻求特色投资和长期增值的投资者。

7.3 未来市场的挑战和机遇

宜兴房地产市场面临众多挑战,同时也蕴藏着无限机遇。

7.3.1 未来市场的挑战

  • 市场饱和 : 某些区域可能会出现市场饱和,增加市场开发难度。
  • 政策风险 : 宏观经济政策的变化可能对房地产市场产生较大影响。
  • 资金压力 : 在经济下行压力下,资金链紧张可能会成为制约市场发展的因素。

7.3.2 未来市场的机遇

  • 城市更新 : 旧城改造和新区开发将为房地产市场带来新的开发空间。
  • 科技应用 : 科技的不断进步为房地产市场提供了新的发展机遇,如智慧城市和智慧社区。
  • 消费升级 : 随着居民收入的提高,对住房质量和服务有了更高要求,这将推动房地产市场不断升级。

通过深入分析和合理预测,投资者和开发者可以更好地把握宜兴房地产市场的未来走势,制定有效的市场策略。在挑战和机遇并存的市场环境下,明确自己的定位和目标,将有助于在宜兴房地产市场中占据有利地位。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本报告提供了宜兴市2020年4月份房地产市场的详尽分析,包括市场概况、房价指数、供求关系、销售数据、投资活动、政策影响、经济环境、消费者信心和未来展望等方面。报告针对宜兴各区域的市场表现进行了深入的区域分析,为投资者、研究人员和政策制定者提供了宝贵的市场洞察和决策支持。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值