利用用户标签数据

本文探讨了标签作为连接用户兴趣与物品语义的桥梁,在个性化推荐系统中的应用。文章介绍了标签的两种主要应用场景:由作者或专家打标签和用户生成内容(UGC)的标签,并讨论了如何基于标签为用户推荐物品及如何推荐适合物品的标签。
摘要由CSDN通过智能技术生成

除了之前提到的UserCF和ItemCF两种方法,第三种重要的方式是通过一些特征(feature )联系用户和物品,给用户推荐那些具有用户喜欢的特征的物品。这里的特征有不同的表现方式,比如可以表现为物品的属性集合(比如对于图书,属性集合包括作者、出版社、主题和关键词等),也可以表现为隐语义向量(latent factor vector),这可以通过前面提出的隐语义模型习得到。本章将讨论一种重要的特征表现方式"标签"。

什么是标签

标签是一种无层次化结构的、用来描述信息的关键词,它可以用来描述物品的语义。根据给物品打标签的人的不同,标签应用一般分为两种:一种是让作者或者专家给物品打标签;另一种是让普通用户给物品打标签,也就MUGC (User Generated Content,用户生成的内容)的标签应用。UGC的标签系统是一种表示用户兴趣和物品语义的重要方式。当一个用户对一个物品打上一个标签,这个标签一方面描述了用户的兴趣,另一方面则表示了物品的语义,从而将用户和物品联系了起来。、

标签系统中的推荐问题

打标签作为一种重要的用户行为,蕴含了很多用户兴趣信息,因此深人研究和利用用户打标
签的行为可以很好地指导我们改进个性化推荐系统的推荐质量。同时,标签的表示形式非常简单, 便于很多算法处理。
标签系统中的推荐问题主要有以下两个。
如何利用用户打标签的行为为其推荐物品(基于标签的推荐)?
如何在用户给物品打标签时为其推荐适合该物品的标签(标签推荐)?
为了研究上面的两个问题,我们首先需要解答下面3个问题。
用户为什么要打标签?
用户怎么打标签?
用户打什么样的标签?

基于标签的推荐系统

拿到了用户标签行为数据,相信大家都可以想到一个最简单的个性化推荐算法。这个算法的
描述如下所示。

  1. 统计每个用户最常用的标签。
  2. 对于每个标签,统计被打过这个标签次数最多的物品。
  3. 对于一个用户,首先找到他常用的标签,然后找到具有这些标签的最热门物品推荐给这
    个用户。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值