论文分享--- >Learning to Rank: From Pairwise Approach to Listwise Approach

本篇博文分享和总结下论文Learning to Rank:From&a...

2018-09-20 19:39:42

阅读数 486

评论数 0

论文分享-- >From RankNet to LambdaRank to LambdaMART: An Overview

严格来说,这并不是一篇论文,只是一个reportreportreport ,里面系统的介绍了三个比较著名的排序模型RankNet、LambdaRank、LambdaMARTRankNet、LambdaRank、LambdaMARTRankNet、LambdaRank、LambdaMART ,链接 ...

2018-09-20 19:39:27

阅读数 406

评论数 0

机器学习-- > 隐马尔科夫模型(HMM)

本篇博文将详细总结隐马模型相关知识,理解该模型有一定的难度,在此浅薄的谈下自己的理解。 HMM定义 HMMHMMHMM 是关于时序的概率模型,描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,再由各个状态生成观测随机序列的过程。 隐马尔科夫模型随机生成的状态随机序列,称为状态序列;每个状...

2018-06-10 14:19:15

阅读数 347

评论数 0

常用优化方法总结

本篇博文总结一些常用的优化算法。 SGD 最常见的优化方法是SGDSGDSGD ,基础的原理不详细讲了,讲下其缺陷。 θ=θ−η∗▿θJ(θ)θ=θ−η∗▽θJ(θ)\theta = \theta-\eta *\triangledown_{\theta} J(\theta) 1. 当...

2018-05-27 17:26:57

阅读数 412

评论数 0

评价指标总结

本篇博文主要总结下机器学习,深度学习,自然语言处理里面的一些的评价指标及其背后的原理。 机器学习 分类问题 精确率 (Precision) TPTP+FPTPTP+FP\frac{TP}{TP+FP} 可以这样理解准确率:分母是我们这边所有预测为真的数量,包括正确预测为真的和错误...

2018-05-27 15:31:03

阅读数 591

评论数 0

RL for Sentence Generation

本篇博文主要总结下台大教授李宏毅深度学习课程中关于seqGANseqGANseqGAN 的相关内容,并且添加了自己的一些思考。 Policy Gradient 众所周知,强化学习的目标就是Maximizing Expected RewardM...

2018-05-22 17:27:38

阅读数 163

评论数 0

Adversarial Learning for Neural Dialogue Generation 代码分析

作为一名NLPlayerNLPlayerNLPlayer 初学者,或者是一名道行不是很深的NLPlayerNLPlayerNLPlayer ,很有必要细细的评读相关优秀的论文,但是如果只是读论文,而不去探索实际的代码的实现,可能无法提高代码能力,也比较难的深刻理解论文中的一些细节,所以在读完论文后...

2018-05-18 16:33:42

阅读数 1069

评论数 4

论文分享-- >Adversarial Learning for Neural Dialogue Generation

本次要分享的论文是Adversarial Learning for Neural Dialogue GenerationAdversarial&nbsp...

2018-05-17 14:52:32

阅读数 440

评论数 0

论文分享-- >SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

本次要分享和总结的论文为:SeqGAN: Sequence Generative Adversarial Nets with Policy GradientSeqGAN:\ Sequence\ Generative\ Adversarial\ Nets\ with\ Policy\ Gradien...

2018-05-10 23:42:19

阅读数 1279

评论数 3

强化学习-->Deep Reinforcement Learning

因为逐渐有人将强化学习应用到NLPNLP 的任务上,有必要了解一些强化学习基础知识,本篇博文总结自台大教授李宏毅关于深度学习的公开课内容。我们可以以上图来理解强化学习过程,我们机器人agentagent 通过observationobservation 了解到环境的 StateState,采取一些...

2018-05-08 23:46:16

阅读数 178

评论数 0

论文分享-->Attention-over-Attention Neural Networks for Reading Comprehension

本次要分享的论文是Attention−over−Attention Neural Networks for Reading ComprehensionAttention-over-Attention\ Neural\ Networks\ for\ Reading\ Comprehension,论文...

2018-05-07 21:06:29

阅读数 252

评论数 1

论文分享-->GloVe: Global Vectors for Word Representation

本次要分享和总结的论文是GloVe:Global Vectors for Word RepresentationGloVe: Global\ Vectors\ for\ Word\ Representation,这是一篇介绍新的word Representationword\ Representa...

2018-05-03 23:19:53

阅读数 1037

评论数 3

论文分享-->Attention is all you need

本次分享的论文是鼎鼎有名的attention is all you needattention\ is\ all\ you\ need,论文链接attention is all you need,其参考的tensorflowtensorflow 实现代码tensorflow代码实现。自己水平有限,...

2018-04-30 17:03:36

阅读数 749

评论数 3

tensorflow-- >论文代码阅读总结

张量介绍在tensorflowtensorflow中我们要处理的张量通常有二维,三维,甚至四维,那么该如何判断给定张量的维度呢?以及各个维度上的大小呢?简单来说,从给定张量的最外层开始,判断次外层相同等级的括号,有几对,如有nn对,则nn为该张量第一个维度上的大小,然后依次同理向内层。例如[ [1...

2018-04-30 11:07:33

阅读数 397

评论数 1

论文分享-->word2Vec论文总结

一直以来,对word2vecword2vec,以及对 tensorflowtensorflow 里面的wordEmbeddingwordEmbedding底层实现原理一直模糊不清,由此决心阅读word2Vecword2Vec的两篇原始论文,Efficient Estimation of Word ...

2018-04-26 15:33:51

阅读数 1922

评论数 0

论文分享-->Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN

本周开始,我将一周分享和总结三篇关于自然语言处理方面的论文及其开源代码(如果有的话),以期在三个月后的校招面试中能招架住面试官的各种提问。本篇论文中了CVPR 2018CVPR\ 2018,提出了一种新型的 RNNRNN 模型,论文实验显示相对于传统的RNNRNN以及LSTMLSTM、GRUGRU...

2018-04-24 17:12:19

阅读数 746

评论数 0

深度学习-->Improved GAN-->WGAN

上两篇博文介绍和总结了Generative Adversarial NetworkGenerative\ Adversarial\ Network 的原始版本以及改进后的版本f−GANf-GAN,本篇博文将详细总结WGANWGANEarth Mover Distance在original GANo...

2018-02-22 21:35:23

阅读数 947

评论数 0

深度学习-- > Improved GAN-- > f-GAN

上一篇博文中详细总结和推导了GANGAN网络的原理,但是如此的GANGAN网络有他的不足之处,本博文将详细说明其不足之处,以及解决和提高的办法。original GAN 不足之处简单回顾GAN网络原理蓝色的线表示:Generated distributionGenerated\ distribu...

2018-02-22 03:17:05

阅读数 277

评论数 0

深度学习-->GAN-->original GAN

本博文主要讲解和总结生成对抗神经网络,也即是耳熟能详的GAN神经网络原理,将从数学层面详细的进行总结和分析。 GAN神经网络大致原理 整体learn过程 我们可以这样理解上图:首先随机初始化第一代的generator v1generator&am...

2018-02-19 14:37:32

阅读数 1356

评论数 0

深度学习-->NLP-->Seq2Seq Learning(Encoder-Decoder,Beam Search,Attention)

之前总结过RNNLMRNNLM,是一个SequenceModel,其结构类似如下:这里面是一个一个的输出。我们如果以这种方式做机器翻译,每一个时刻输入一个词,相应的翻译一个词,显然这种一个一个单词的翻译方式不是很好,因为没有联系上下文进行翻译。我们希望先把一整句话喂给模型,然后模型在这一个整句的角...

2017-11-22 23:48:26

阅读数 2011

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭