从18年11月底开始看图像修复这个领域的文章,到复现何凯明大神的paper,目前传统领域的图像修复算法也大致了解了一些,做一个总结,后续应该不会再有时间精力去看图像修复的paper了。
总结
图像修复可以分为两种,一种是面积比较小的,通常称为inpainting,这种可以认为目前算法已经能处理得比较好了;另外一种则是面积相对大一些的,论文里面都称为Image Completion,也是图像修复的难点了。针对这些问题,目前看过的传统(除开深度学习的那种)主要有以下几种
- 应用变分法对修复区域进行修复的,这种算法需要迭代,比较慢,效果也不是特别好,对于面积稍大的区域会产生明显的模糊效果。
- 基于边界优先级的顺序填充算法,代表作就是Criminisi的paper,图像修复:Object Removal by Exemplar-Based Inpainting 学习笔记
- 基于patch-vote的space-time Completion,对于每个点周围的patch进行投票作为该点的修复值,比较像non-local mean的感觉,效果也不错,adobe photoshop 5用的是这个算法。图像修复: PatchMatch与Space-Time completion
- 基于offset的,用图割算法解多标签问题。这个只看了hekaiming的satistic of similar pat