图像填充修复- 传统算法总结

本文总结了图像修复的传统算法,包括基于变分法、边界优先级的顺序填充、patch-vote的space-time Completion及基于offset的图割算法。这些方法存在局限性,如依赖已知区域信息、处理复杂度高。深度学习有望解决这些问题,提供更强大的图像修复能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从18年11月底开始看图像修复这个领域的文章,到复现何凯明大神的paper,目前传统领域的图像修复算法也大致了解了一些,做一个总结,后续应该不会再有时间精力去看图像修复的paper了。

总结

图像修复可以分为两种,一种是面积比较小的,通常称为inpainting,这种可以认为目前算法已经能处理得比较好了;另外一种则是面积相对大一些的,论文里面都称为Image Completion,也是图像修复的难点了。针对这些问题,目前看过的传统(除开深度学习的那种)主要有以下几种

  1. 应用变分法对修复区域进行修复的,这种算法需要迭代,比较慢,效果也不是特别好,对于面积稍大的区域会产生明显的模糊效果。
  2. 基于边界优先级的顺序填充算法,代表作就是Criminisi的paper,图像修复:Object Removal by Exemplar-Based Inpainting 学习笔记
  3. 基于patch-vote的space-time Completion,对于每个点周围的patch进行投票作为该点的修复值,比较像non-local mean的感觉,效果也不错,adobe photoshop 5用的是这个算法。图像修复: PatchMatch与Space-Time completion
  4. 基于offset的,用图割算法解多标签问题。这个只看了hekaiming的satistic of similar pat
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值