blackli7
码龄7年
关注
提问 私信
  • 博客:1,749
    1,749
    总访问量
  • 5
    原创
  • 329,703
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-06-05
博客简介:

weixin_42392668的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得0次评论
  • 获得2次收藏
创作历程
  • 5篇
    2021年
成就勋章
TA的专栏
  • QA/IR
    5篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

爬在NLP的大道上——Learning Dense Representations of Phrases at Scale

爬在NLP的大道上——Learning Dense Representations of Phrases at Scale欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入论文地址:https:
原创
发布博客 2021.09.17 ·
669 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

爬在NLP的大道上——Question Answering Infused Pre-training of General-Purpose Contextualized Representations

爬在NLP的大道上——Question Answering Infused Pre-training of General-Purpose Contextualized RepresentationsMotivation:Method:Tips:Results:My Thoughts:论文地址:https://arxiv.org/pdf/2106.08190.pdfMotivation:传统的预训练方式都是基于上下文信息理解的(BERTs),能否考虑改变这一种方式,使用问答的形式来训练模型(原文中未说
原创
发布博客 2021.09.17 ·
277 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

爬在NLP的大道上——Learning Robust Dense Retrieval Models from Incomplete Relevance Labels

爬在NLP的大道上——Learning Robust Dense Retrieval Models from Incomplete Relevance LabelsMotivation:Method:Tips:Results:My Thoughts:论文地址:https://dl.acm.org/doi/pdf/10.1145/3404835.3463106Motivation:基于ANCE,主要为了解决:when large-scale training data lacks complete re
原创
发布博客 2021.09.17 ·
281 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

爬在NLP的大道上——A Neural Model for Joint Document and Snippet Ranking in Question Answering for Large Doc

爬在NLP的大道上——A Neural Model for Joint Document and Snippet Ranking in Question Answering for Large Document CollectionsMotivation:Method:Tips:Results:My Thoughts:论文地址:https://arxiv.org/pdf/2106.08908.pdfMotivation:注意到在解决QA问题时,如果采取“先对document进行rerank打分,再对
原创
发布博客 2021.09.17 ·
203 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

爬在NLP的大道上——More Robust Dense Retrieval with Contrastive Dual Learning

爬在NLP的大道上——More Robust Dense Retrieval with Contrastive Dual LearningMotivation:Method:Tips:Results:My Thoughts:论文地址:https://arxiv.org/pdf/2107.07773.pdfMotivation:现有的dense retrieval方法虽然很有效,但是q、p在空间中的分布还是很混乱(凭嘴说),原因在于现有的模型旨在对于给定的q,拉近+document的距离,拉远-doc
原创
发布博客 2021.09.17 ·
319 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏