Column Space Null Space
All linear combinations c v + d w c \textbf{v}+d\textbf{w} cv+dw are in the space.
Subspace
S
S
S and
T
T
T:
Intersection
S
∩
T
S\cap T
S∩T is a subspace
Column Space
A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] A=\left[ \begin{matrix} 1&1&2 \\ 2&1&3 \\ 3&1&4 \\ 4&1&5 \end{matrix} \right] A=⎣⎢⎢⎡123411112345⎦⎥⎥⎤
The column space of A is a subspace of
R
4
R^4
R4.
C
(
A
)
C(A)
C(A) is all linear combinations of columns.
A
X
=
b
AX=b
AX=b not have a solution for every
b
b
b.
But for some right hand side, we can solve it, exactly when
b
b
b is in the column space.
Null Space
Null space of A: contains all solutions
X
X
X to the equation
A
X
=
0
AX = \bf{0}
AX=0
In this example, the null space is a subspace of
R
3
R^3
R3.
Lecture 7: Pivot Variables-Free Variables
A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] A=\left[ \begin{matrix} 1&2&2&2 \\ 2&4&6&8 \\ 3&6&8&10 \end{matrix} \right] A=⎣⎡1232462682810⎦⎤
−
>
[
1
2
2
2
0
0
2
4
0
0
0
0
]
−
>
e
c
h
e
l
o
n
f
o
r
m
->\left[ \begin{matrix} 1&2&2&2 \\ 0&0&2&4 \\ 0&0&0&0 \end{matrix} \right]->echelon\ form
−>⎣⎡100200220240⎦⎤−>echelon form
2 pivot columns
2 free columns
x
1
+
2
x
2
+
2
x
3
+
2
x
4
=
0
2
x
3
+
4
x
4
=
0
\begin{aligned} x_1 + 2 x_2 + 2x_3 + 2x_4 = 0 \\ 2x_3 + 4x_4 = 0 \end{aligned}
x1+2x2+2x3+2x4=02x3+4x4=0
free variables:
x
2
,
x
4
x_2, x_4
x2,x4
[
−
2
1
0
0
]
[
2
0
−
2
1
]
\left[ \begin{matrix} -2 \\ 1 \\ 0 \\ 0 \end{matrix} \right] \left[ \begin{matrix} 2 \\ 0 \\ -2 \\ 1 \end{matrix} \right]
⎣⎢⎢⎡−2100⎦⎥⎥⎤⎣⎢⎢⎡20−21⎦⎥⎥⎤
So the solution is:
X
=
c
[
−
2
1
0
0
]
+
d
[
2
0
−
2
1
]
X=c\left[ \begin{matrix} -2 \\ 1 \\ 0 \\ 0 \end{matrix} \right]+ d\left[ \begin{matrix} 2 \\ 0 \\ -2 \\ 1 \end{matrix} \right]
X=c⎣⎢⎢⎡−2100⎦⎥⎥⎤+d⎣⎢⎢⎡20−21⎦⎥⎥⎤
Rank: the number of the pivot variables
n − r = 4 − 2 n-r = 4-2 n−r=4−2: number of free variables
R
=
r
e
d
u
c
e
d
r
o
w
e
c
h
e
l
o
n
f
o
r
m
R=reduced\ row\ echelon\ form
R=reduced row echelon form
[
1
2
2
2
0
0
2
4
0
0
0
0
]
−
>
[
1
2
0
−
2
0
0
1
2
0
0
0
0
]
=
R
\left[ \begin{matrix} 1&2&2&2 \\ 0&0&2&4 \\ 0&0&0&0 \end{matrix} \right]-> \left[ \begin{matrix} 1&2&0&-2 \\ 0&0&1&2 \\ 0&0&0&0 \end{matrix} \right]=R
⎣⎡100200220240⎦⎤−>⎣⎡100200010−220⎦⎤=R
Lecture 8: AX=b
Sovability condition on b
A
X
=
b
AX = b
AX=b solvable when
b
b
b is in C(A)
If a combination of rows of
A
A
A gives zero row, the same combination of
b
b
b must give 0.
Find complete solution to A X = b AX=b AX=b
- x p a r t i c u l a r x_{particular} xparticular: set all free variables to zero. Solve A X = b AX=b AX=b for pivot variables
- x n u l l s p a c e x_{nullspace} xnullspace:
x = x p + x n x = x_p + x_n x=xp+xn
Full column rank
r
=
n
r = n
r=n
No free variables
N
(
A
)
=
{
z
e
r
o
v
e
c
t
o
r
}
N(A) = \{zero \ vector\}
N(A)={zero vector}
X
=
x
p
X = x_p
X=xp
unique solution if it exists
Full row rank
r
=
m
r=m
r=m
Can solve
A
X
=
b
AX = b
AX=b for every
b
b
b
Left with
n
−
r
n-r
n−r free variables
Conclusion
r
=
m
=
n
r = m = n
r=m=n:
R
=
I
R = I
R=I
1 solution for
A
X
=
b
AX=b
AX=b
r
=
n
<
m
r = n<m
r=n<m:
R
=
[
I
0
]
R = \left[ \begin{matrix} I\\0 \end{matrix} \right]
R=[I0]
0 or 1 solution
r
=
m
<
n
r = m < n
r=m<n:
R
=
[
I
F
]
R = \left[ \begin{matrix} I & F \end{matrix} \right]
R=[IF]
∞
\infin
∞ solutions
r
<
m
,
r
<
n
r < m, r < n
r<m,r<n:
R
=
[
I
F
0
0
]
R = \left[ \begin{matrix} I & F \\ 0 & 0 \end{matrix} \right]
R=[I0F0]
0 or
∞
\infin
∞ solutions
Lecture 9: Linear Independence
Linear independence
Vectors x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,…,xn are independent if no combination gives zero vector (except the zero combination)
c 1 x 1 + c 2 x x + ⋯ + c n x n ≠ 0 ( c i ≠ 0 ) c_1x_1+c_2x_x+\dots+c_nx_n \neq 0 (c_i\neq0) c1x1+c2xx+⋯+cnxn=0(ci=0)
Span a space
vectors: v 1 , … , v l v_1, \dots, v_l v1,…,vl span a space means the space consists of all combinations of those vectors
Basis
Basis for a space is a sequence of vectors with 2 properties:
- They are independent
- They span the space
E.g: Space is
R
3
R^3
R3
One basis is :
[
1
0
0
]
[
0
1
0
]
[
0
0
1
]
\left[ \begin{matrix} 1\\0\\0 \end{matrix} \right] \left[ \begin{matrix} 0\\1\\0 \end{matrix} \right]\left[ \begin{matrix} 0\\0\\1 \end{matrix} \right]
⎣⎡100⎦⎤⎣⎡010⎦⎤⎣⎡001⎦⎤
Another basis:
[
1
1
2
]
[
2
2
5
]
[
0
4
π
]
\left[ \begin{matrix} 1\\1\\2 \end{matrix} \right] \left[ \begin{matrix} 2\\2\\5 \end{matrix} \right]\left[ \begin{matrix} 0\\4\\ \pi \end{matrix} \right]
⎣⎡112⎦⎤⎣⎡225⎦⎤⎣⎡04π⎦⎤
Dimension
Every basis for the space has the same number of vectors. This number is called the dimension
rank( A A A) = # pivot columns = dimension of C( A A A)
d i m N ( A ) = dimN(A)= dimN(A)= # free variables
Lecture 10
4 Subspaces
column space
C
(
A
)
C(A)
C(A)
nullspace
N
(
A
)
N(A)
N(A)
rowspace = all combinations of the columns of
A
T
A^T
AT =
C
(
A
T
)
C(A^T)
C(AT)
nullspace
N
(
A
T
)
N(A^T)
N(AT) = the left nullspace of
A
A
A
C
(
A
)
C(A)
C(A) is in
R
m
R^m
Rm
N
(
A
)
N(A)
N(A) is in
R
n
R^n
Rn
C
(
A
T
)
C(A^T)
C(AT) is in
R
n
R^n
Rn
N
(
A
T
)
N(A^T)
N(AT) is in
R
m
R^m
Rm