线代notes_2: MIT18.06 L6-L10

Column Space Null Space

All linear combinations c v + d w c \textbf{v}+d\textbf{w} cv+dw are in the space.

Subspace S S S and T T T:
Intersection S ∩ T S\cap T ST is a subspace

Column Space

A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] A=\left[ \begin{matrix} 1&1&2 \\ 2&1&3 \\ 3&1&4 \\ 4&1&5 \end{matrix} \right] A=123411112345

The column space of A is a subspace of R 4 R^4 R4.
C ( A ) C(A) C(A) is all linear combinations of columns.
A X = b AX=b AX=b not have a solution for every b b b.
But for some right hand side, we can solve it, exactly when b b b is in the column space.

Null Space

Null space of A: contains all solutions X X X to the equation A X = 0 AX = \bf{0} AX=0
In this example, the null space is a subspace of R 3 R^3 R3.

Lecture 7: Pivot Variables-Free Variables

A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] A=\left[ \begin{matrix} 1&2&2&2 \\ 2&4&6&8 \\ 3&6&8&10 \end{matrix} \right] A=1232462682810

− > [ 1 2 2 2 0 0 2 4 0 0 0 0 ] − > e c h e l o n   f o r m ->\left[ \begin{matrix} 1&2&2&2 \\ 0&0&2&4 \\ 0&0&0&0 \end{matrix} \right]->echelon\ form >100200220240>echelon form
2 pivot columns
2 free columns

x 1 + 2 x 2 + 2 x 3 + 2 x 4 = 0 2 x 3 + 4 x 4 = 0 \begin{aligned} x_1 + 2 x_2 + 2x_3 + 2x_4 = 0 \\ 2x_3 + 4x_4 = 0 \end{aligned} x1+2x2+2x3+2x4=02x3+4x4=0
free variables: x 2 , x 4 x_2, x_4 x2,x4
[ − 2 1 0 0 ] [ 2 0 − 2 1 ] \left[ \begin{matrix} -2 \\ 1 \\ 0 \\ 0 \end{matrix} \right] \left[ \begin{matrix} 2 \\ 0 \\ -2 \\ 1 \end{matrix} \right] 21002021

So the solution is:
X = c [ − 2 1 0 0 ] + d [ 2 0 − 2 1 ] X=c\left[ \begin{matrix} -2 \\ 1 \\ 0 \\ 0 \end{matrix} \right]+ d\left[ \begin{matrix} 2 \\ 0 \\ -2 \\ 1 \end{matrix} \right] X=c2100+d2021

Rank: the number of the pivot variables

n − r = 4 − 2 n-r = 4-2 nr=42: number of free variables

R = r e d u c e d   r o w   e c h e l o n   f o r m R=reduced\ row\ echelon\ form R=reduced row echelon form
[ 1 2 2 2 0 0 2 4 0 0 0 0 ] − > [ 1 2 0 − 2 0 0 1 2 0 0 0 0 ] = R \left[ \begin{matrix} 1&2&2&2 \\ 0&0&2&4 \\ 0&0&0&0 \end{matrix} \right]-> \left[ \begin{matrix} 1&2&0&-2 \\ 0&0&1&2 \\ 0&0&0&0 \end{matrix} \right]=R 100200220240>100200010220=R

Lecture 8: AX=b

Sovability condition on b

A X = b AX = b AX=b solvable when b b b is in C(A)
If a combination of rows of A A A gives zero row, the same combination of b b b must give 0.

Find complete solution to A X = b AX=b AX=b

  1. x p a r t i c u l a r x_{particular} xparticular: set all free variables to zero. Solve A X = b AX=b AX=b for pivot variables
  2. x n u l l s p a c e x_{nullspace} xnullspace:

x = x p + x n x = x_p + x_n x=xp+xn

Full column rank

r = n r = n r=n
No free variables
N ( A ) = { z e r o   v e c t o r } N(A) = \{zero \ vector\} N(A)={zero vector}
X = x p X = x_p X=xp
unique solution if it exists

Full row rank

r = m r=m r=m
Can solve A X = b AX = b AX=b for every b b b
Left with n − r n-r nr free variables

Conclusion

r = m = n r = m = n r=m=n:
R = I R = I R=I
1 solution for A X = b AX=b AX=b

r = n < m r = n<m r=n<m:
R = [ I 0 ] R = \left[ \begin{matrix} I\\0 \end{matrix} \right] R=[I0]
0 or 1 solution

r = m < n r = m < n r=m<n:
R = [ I F ] R = \left[ \begin{matrix} I & F \end{matrix} \right] R=[IF]
∞ \infin solutions

r < m , r < n r < m, r < n r<m,r<n:
R = [ I F 0 0 ] R = \left[ \begin{matrix} I & F \\ 0 & 0 \end{matrix} \right] R=[I0F0]
0 or ∞ \infin solutions

Lecture 9: Linear Independence

Linear independence

Vectors x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn are independent if no combination gives zero vector (except the zero combination)

c 1 x 1 + c 2 x x + ⋯ + c n x n ≠ 0 ( c i ≠ 0 ) c_1x_1+c_2x_x+\dots+c_nx_n \neq 0 (c_i\neq0) c1x1+c2xx++cnxn=0(ci=0)

Span a space

vectors: v 1 , … , v l v_1, \dots, v_l v1,,vl span a space means the space consists of all combinations of those vectors

Basis

Basis for a space is a sequence of vectors with 2 properties:

  1. They are independent
  2. They span the space

E.g: Space is R 3 R^3 R3
One basis is :
[ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ] \left[ \begin{matrix} 1\\0\\0 \end{matrix} \right] \left[ \begin{matrix} 0\\1\\0 \end{matrix} \right]\left[ \begin{matrix} 0\\0\\1 \end{matrix} \right] 100010001

Another basis:
[ 1 1 2 ] [ 2 2 5 ] [ 0 4 π ] \left[ \begin{matrix} 1\\1\\2 \end{matrix} \right] \left[ \begin{matrix} 2\\2\\5 \end{matrix} \right]\left[ \begin{matrix} 0\\4\\ \pi \end{matrix} \right] 11222504π

Dimension

Every basis for the space has the same number of vectors. This number is called the dimension

rank( A A A) = # pivot columns = dimension of C( A A A)

d i m N ( A ) = dimN(A)= dimN(A)= # free variables

Lecture 10

4 Subspaces

column space C ( A ) C(A) C(A)
nullspace N ( A ) N(A) N(A)
rowspace = all combinations of the columns of A T A^T AT = C ( A T ) C(A^T) C(AT)
nullspace N ( A T ) N(A^T) N(AT) = the left nullspace of A A A

C ( A ) C(A) C(A) is in R m R^m Rm
N ( A ) N(A) N(A) is in R n R^n Rn
C ( A T ) C(A^T) C(AT) is in R n R^n Rn
N ( A T ) N(A^T) N(AT) is in R m R^m Rm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值