Hive特点

Hive特点

1.针对海量数据的高性能查询和分析系统

由于 Hive 的查询是通过 MapReduce 框架实现的,而 MapReduce 本身就是为实现针对海量数据的高性能处理而设计的。所以 Hive 天然就能高效的处理海量数据。

与此同时,Hive 针对 HiveQL 到 MapReduce的翻译进行了大量的优化,从而保证了生成的MapReduce 任务是高效的。在实际应用中,Hive 可以高效的对 TB 甚至 PB级的数据进行处理。

2.类SQL的查询语言

HiveQL 和 SQL 非常类似,所以一个熟悉SQL 的用户基本不需要培训就可以非常容易的使用 Hive 进行很复杂的查询。

3.HiveQL 灵活的可扩展性(Extendibility)

除了 HiveQL 自身提供的能力,用户还可以自定义其使用的数据类型、也可以用任何语言自定义 mapper 和 reducer 脚本,还可以自定义函数(普通函数、聚集函数)等。这就赋予了 HiveQL 极大的可扩展性。用户可以利用这种可扩展性实现非常复杂的查询。

4.高扩展性(Scalability)和容错性

Hive本身并没有执行机制,用户查询的执行是通过 MapReduce 框架实现的。由于MapReduce 框架本身具有高度可扩展(计算能力随 Hadoop 机群中机器的数量增加而线性增加)和高容错的特点,所以 Hive也相应具有这些特点。

5.与 Hadoop 其他产品完全兼容

Hive 自身并不存储用户数据,而是通过接口访问用户数据。这就使得Hive支持各种数据源和数据格式。例如,它支持处理 HDFS 上的多种文件格式(TextFile、SequenceFile 等),还支持处理 HBase 数据库。用户也完全可以实现自己的驱动来增加新的数据源和数据格式。一种理想的应用模型是将数据存储在 HBase 中实现实时访问,而用Hive对HBase 中的数据进行批量分析。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值