python卡尔曼滤波室内定位_基于核函数与卡尔曼滤波的室内定位方法

第 38卷 第 3期 上 海 理 工 大 学 学 报 J.University of Shanghai for Science and Technology Vot.38 No.3 2016 文章编 号 :1007—6735(2016)03—0287—06 DOI:10.13255/j.cnki.jusst.2016.03.013 基 于核 函数与卡尔曼滤波 的室 内定位方法 张 旭 , 张 裕 , 郑正奇 。, 陈 雯。 (1.华东师范大学 信息科学技术学 院,上海 200241;2.上海市计量测试技术研究院 ,上海 200120 3.空间信息和定位导航上海高校工程中心 ,上海 200241) 摘要 :针对 室内定位 中存在的定位精度不高、定位稳定性较差的问题 ,提 出了一种基于核 函数与卡 尔曼滤波结合的室内定位算法.首先利用核函数作为匹配算法进行初步定位,高斯核函数可以充分 捕获参考点指纹与测试点 RSS之间的非线性相关性,取得比 K最近邻算法更好的匹配效果,再利 用卡 尔曼滤波对核 函数 的定位结果作滤波处理.实验结果表 明,在真 实无线局域 网环境 下,对核 函 数定位的结果作卡尔曼滤波处理后 ,均方根误差 降低 了 25%,2 m 以内的定位准确度 由 75%提 高 到 90% ,定 位稳 定性 提 高 了 29%. 关键词:室内定位 ;定位准确度 ;高斯核 函数 ;卡 尔曼滤波 中图分类号 :TP 393 文献标志码 :A Indoor Positioning M ethod Based on K ernel Function and Kalm an Filtering ZHANG Xu , ZHANG Yu , ZHENG Zhengqi , CHEN Wen3 (1.School ofInformation Science Technology,East China Normal University,Shanghai 200241,China; 2.Shanghai Institute ofMeasurement and Testing Technology,Shanghai 200120,China; 3.EngineeringCenterofSHMECfo SpaceInformation and GNSS,Shanghai 200241,China) Abstract:Against the problems that indoor positioning suffers from low accuracy and poor stability,an indoor positioning method based on kernel function and Kalman filtering was presented. Gaussian kernel function was adopted for iniital Imsifioning,which can measure the nonlinear similarity between reference points’fingerprint and test points’RSS(received signal strength),SO it will get better accuracy and stability than the K nearest neighbor algorithm.Then the Kalman filtering was used

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卡尔曼滤波是一种用于估计系统状态的算法,它可以有效地处理带有噪声的测量数据,并且可以预测未来的状态。在机器人领域中,卡尔曼滤波可以用于跟踪机器人的位置、速度等状态信息。 下面是一个使用卡尔曼滤波器进行圆周运动跟踪机器人的示例: 1. 首先,我们需要定义机器人的状态量。在这个例子中,我们可以定义机器人的位置和速度: ``` state = np.array([x, y, vx, vy]) ``` 其中,x和y是机器人的坐标,vx和vy是机器人的速度。 2. 接下来,我们需要定义卡尔曼滤波器的状态转移矩阵和测量矩阵。状态转移矩阵描述了系统状态如何随时间推移而变化,测量矩阵描述了如何将系统状态映射到测量值。 对于圆周运动的机器人,我们可以定义状态转移矩阵为: ``` F = np.array([[1, 0, dt, 0], [0, 1, 0, dt], [0, 0, 1, 0], [0, 0, 0, 1]]) ``` 其中,dt是时间步长。该矩阵表示机器人的位置在每个时间步长内根据速度进行更新,速度保持不变。 测量矩阵可以定义为: ``` H = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) ``` 该矩阵表示测量值是机器人的位置,因此可以将系统状态直接映射到测量值。 3. 接下来,我们需要初始化卡尔曼滤波器的状态和协方差矩阵。状态矩阵表示卡尔曼滤波器对机器人状态的估计,协方差矩阵表示估计的不确定性。 ``` state = np.array([x, y, vx, vy]) P = np.eye(4) * 1000 ``` 其中,P的初始值可以设置为一个较大的值,表示我们对机器人状态的估计相当不确定。 4. 在每个时间步长内,我们需要进行以下操作: - 预测机器人的状态:使用状态转移矩阵来预测机器人的位置和速度,并且更新协方差矩阵。 ``` state = F @ state P = F @ P @ F.T + Q ``` 其中,Q是过程噪声的协方差矩阵,它表示我们对系统的建模有多精确。在这个例子中,我们可以将其设置为: ``` Q = np.array([[0.1, 0, 0, 0], [0, 0.1, 0, 0], [0, 0, 0.1, 0], [0, 0, 0, 0.1]]) ``` - 根据测量值更新机器人的状态:使用测量矩阵将机器人的状态映射到测量值,并且计算测量噪声的协方差矩阵。 ``` z = np.array([measurement_x, measurement_y]) R = np.array([[0.1, 0], [0, 0.1]]) ``` 其中,R是测量噪声的协方差矩阵,它表示我们对测量的精确度有多大。 - 计算卡尔曼增益:卡尔曼增益表示我们对测量值的信任程度。它越大,我们对测量值的信任程度就越高,对预测值的信任程度就越低。 ``` K = P @ H.T @ np.linalg.inv(H @ P @ H.T + R) ``` - 更新机器人的状态和协方差矩阵:使用卡尔曼增益来更新机器人的状态和协方差矩阵。 ``` state = state + K @ (z - H @ state) P = (np.eye(4) - K @ H) @ P ``` 5. 最后,我们可以将机器人的状态用于控制机器人的行动,例如驱动机器人继续进行圆周运动。 这就是使用卡尔曼滤波器进行圆周运动跟踪机器人的基本流程。当然,实际应用中可能需要更复杂的模型和更高级的算法来处理各种噪声和不确定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值