移动互联网时代,精细化运营逐渐成为企业发展的重要竞争力,“用户画像”的概念也应运而生。用户画像是指,在大数据时代,企业通过对海量数据信息进行清洗、聚类、分析,将数据抽象成标签,再利用这些标签将用户形象具体化的过程。用户画像的建立能够帮助企业更好地为用户提供针对性的服务。
与之相应,越来越多的第三方大数据公司,也开始依托自身的数据积累,为客户提供用户画像的服务。比如个推旗下的用户画像产品,能够对用户线上和线下行为进行大数据分析,帮助APP开发者和运营者构建全面、精准、多维的用户画像体系。下文将以个推用户画像产品为例,详解“用户画像”的技术特点和使用价值。
用户画像的形成需要经历四个过程,数据积累、数据清洗、数据建模分析、数据产出。其中,数据清洗和数据建模统称数据处理。在经过数据处理之后,个推产出独特的冷、热、温数据维度,并分析用户的线上兴趣偏好和线下行为场景,形成用户画像。
一、用户画像用了哪些技术?
在数据处理阶段,个推用户画像产品的大数据计算架构采用了Kafka分布式发布订阅消息系统,具有高吞吐量、高稳定性的特点。数据清洗可利用HADOOP、SPARK来实现设备唯一性识别、行为数据的清洗等,去除冗余数据。这一过程支持交互计算和多种复杂算法,并支持数据实时/离线计算。
在数据建模的过程中,个推用户画像产品主要利用了机器学习中的聚类(无监督