python 带数据分布的线性回归最佳拟合线的散点图绘制步骤

该博客探讨了如何利用Seaborn库中的jointplot()函数绘制数据的最佳拟合线,以理解两个变量之间的相互变化关系。示例代码展示了如何加载和调整参数,创建一个线性回归的联合分布图,并提供了自定义样式和颜色的选择。此外,还提到了数据预处理技巧,如将多维数组转换为一维数组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**目的:**如果想了解两个变量如何相互改变,那么确定最佳拟合线就是常用的方法。下图显示了数据中各组之间最佳拟合线的差异。每个轴拟合了各自数据的分布。

示例参考代码:

import seaborn as sns
sns.set(style="darkgrid")
##### 加载数据
tips = sns.load_dataset("tips")
##### jointplot 调整对应的参数
g = sns.jointplot("total_bill", "tip", 
data=tips,kind="reg", truncate=False,
xlim=(0, 60), ylim=
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

℡folk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值