非线性振动 matlab,非线性振动肿么编写matlab程序

该博客介绍了如何在MATLAB中使用三次样条插值方法处理非线性振动问题。通过提供的函数`Spline_interp_1`,可以计算给定数据点的插值,并获取在特定位置的函数值及其导数。函数主要涉及插值点的处理、三对角方程组的追赶法求解以及插值函数的构建。
摘要由CSDN通过智能技术生成

function [y0,C,x]=Spline_interp_1(X,Y,s0,sN,x0)

%X,Y是已知插值点坐标

%s0,sN是两端点的一次导数值

%x0是插值点

%y0是三次样条函数在x0处的值

%C是分段三次样条函数的系数,按升幂排列,区间[Xj,Xj+1]上的表达式为C(j,1)+C(j,2)*(x-Xj)++C(j,3)*(x-Xj)^2+C(j,4)*(x-Xj)^3.

%x是用追赶法依下标顺利求得的插值节点X,Y处的二阶导数值

N=length(X);

C=zeros(4,N-1); h=zeros(1,N-1);

mu=zeros(1,N-1); lmt=zeros(1,N-1);

d=zeros(1,N); %d表示右端函数值

h=X(1,2:N)-X(1,1:N-1);

mu(1,N-1)=1; lmt(1,1)=1;

mu(1,1:N-2)=h(1,1:N-2)./(h(1,1:N-2)+h(1,2:N-1));

lmt(1,2:N-1)=h(1,2:N-1)./(h(1,1:N-2)+h(1,2:N-1));

d(1,1)=6*((Y(1,2)-Y(1,1))/h(1,1)-s0)/h(1,1);

d(1,N)=6*(sN-(Y(1,N)-Y(1,N-1))/h(1,N-1))/h(1,N-1);

d(1,2:N-1)=6*((Y(1,3:N)-Y(1,2:N-1))./h(1,2:N-1)-(Y(1,2:N-1)-Y(1,1:N-2))./h(1,1:N-2))./(h(1,1:N-2)+h(1,2:N-1));

%追赶法解三对角方程组

bit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值