java基础
java基础——面试篇下
java基础——面试篇下
- java基础
- 前言
- 一、Map
- 1、Map常见的几种类型
- 2、HashMap和HashTable的区别
- 3、hashcode()和equals()
- 4、hashMap和TreeMap区别
- 5、Set和Map的关系
- 6、常见的Map的排序规则是怎样的?
- 7、线程安全且效率高的map
- 8、为什么Collections.synchronizedMap()后是线程安全的
- 9、hashMap底层实现
- 10、什么是hash碰撞以及常见的解决方法有哪些?
- 11、hashMap底层为什么要用链表+数组+红黑树的形式?
- 12、为什么用红黑树而不用其他树,比如二叉查找树,为什么不一直开始就用红黑树,而是到8的长度后才变换?
- 13、hashMap底层实现、put、get核心逻辑
- 14、ConcurrentHashMap原理,为什么性能比hashtable高?
- 15、jdk1.7和jdk1.8里面ConcurrentHashMap实现的区别
- 16、ConcurrentHashMap的put的核心逻辑(JDK8以上版本)
- 总结
前言
java基础——面试篇下。
一、Map
1、Map常见的几种类型
HashMap、CurrentHashMap、HashTable、TreeMap、LinkedHashMap。
2、HashMap和HashTable的区别
底层:
HashMap:数组+链表。
HashTable:基于哈希表实现。
线程安全:
HashMap:非线程安全。
HashTable:线程安全,底层用synchronized进行加锁。
默认容量:
HashMap: 默认容量16,允许有空的键值对。
HashTable:默认容量11,不允许有空的键值对。
3、hashcode()和equals()
hashCode:
顶级类Object里面的方法,所有的类都是继承Object,返回是一个int类型的数,根据一定的hash规则(存储地址,字段,长度等),映射成一个数组,即散列值。
equals:
顶级类Object里面的方法,所有的类都是继承Object,返回是一个boolean类型,根据自定义的匹配规则,用于匹配两个对象是否一样,一般逻辑如下
//判断地址是否一样
//非空判断和Class类型判断
//强转
//对象里面的字段一一匹配
使用场景:对象比较、或者集合容器里面排重、比较、排序
4、hashMap和TreeMap区别
hashMap:散列桶(数组+链表)
TreeMap:使用存储结构是一个平衡二叉树<红黑树>,可以自定义排序规则,要实现Comparator接口
能便捷的实现内部元素的各种排序,但是一般性能比HashMap要差,适用于安装自然排序或者自定义排序规则(微信支付签名工具类就是这个类).
5、Set和Map的关系
核心是不保存重复的元素,存储一组唯一的对象
set的每一种实现都是对应Map的一种封装
HashSet对应的就是HashMap,TreeSet对应的就是TreeMap
6、常见的Map的排序规则是怎样的?
按照添加顺序使用LinkedHashMap
按照自然排序使用TreeMap
自定义排序TreeMap(Comparator c)
7、线程安全且效率高的map
多线环境下 concurrent包下的concurrentHashMap 或者使用Collections.synchronizedMap()
ConcurrentHashMap效率比hashTable高很多
8、为什么Collections.synchronizedMap()后是线程安全的
使用Collections.synchronizedMap()包装后的map是加锁的.
9、hashMap底层实现
hashMap底层:数组+链表+红黑树(JDK8之后才有)
数组中每一项是一个链表,即数组和链表的结合体
Node<K,V>[ ] table是数组,数组的元素是Entry(Node继承Entry),Entry是一个key-value键值对,它持有一个指向下个Entry的引用,table数组的每个元素同时也作为Entry链表的首节点,也指向了该链表的下个Entry元素
在JDK1.8中,链表的长度大于8,链表会转换成红黑树
10、什么是hash碰撞以及常见的解决方法有哪些?
hash碰撞——不同的key计算得到的hash值相同,需要放到同一个bucket中
解决办法
链表法、开放地址发、再哈希法等
hashMap采用的就是链表法
11、hashMap底层为什么要用链表+数组+红黑树的形式?
数组: Node<K,V> table 根据对象key的hash值确定在数组里面是哪个节点
链表:解决hash冲突,将hash值一样的对象存成一个链表放在hash值对应的槽位
红黑树:JDK8之后使用红黑树来替代超过8个节点的链表,主要是查询性能的提升,从原来的O(n)到O(logN),通过hash碰撞,让hashMap不断产生碰撞,那么相同的key的位置的链表就会不断增长,当对这个hashMap的相应位置进行查询的时候,就会循环遍历这个超级大的链表,性能就会下降,所以改用红黑树。
12、为什么用红黑树而不用其他树,比如二叉查找树,为什么不一直开始就用红黑树,而是到8的长度后才变换?
二叉查找树在特殊情况下也会变成一条线性结构,和原先的链表存在一样的深度遍历问题,查找性能就会慢。
使用红黑树主要是提升查找数据的速度,红黑树是平衡二叉树的一种,插入新数据后会通过左旋、右旋、变色等操作来保持平衡,解决单链表查询深度的问题
数据量少的时候操作数据,遍历线性表比红黑树所消耗的资源少,且前期数据少,平衡二叉树保持平衡是需要消耗资源的,所以前期采用线性表,等到一定数之后变换到红黑树。
13、hashMap底层实现、put、get核心逻辑
hashMap——Put核心逻辑
hashMap——Get核心逻辑
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//获取首节点,hash碰撞概览小,通常链表第一个节点就是值,没必要去循环遍历,处于效率
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//如果不止一个节点,就需要循环遍历,存在多个hash碰撞
if ((e = first.next) != null) {
//判断是否是红黑树,如果是则调用树的查找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//链表结构,则循环遍历获取节点
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
14、ConcurrentHashMap原理,为什么性能比hashtable高?
ConcurrentHashMap线程安全的Map, hashtable类基本上所有的方法都是采用synchronized进行线程安全控制
高并发情况下效率就降低
ConcurrentHashMap是采用了分段锁的思想提高性能,锁粒度更细化
15、jdk1.7和jdk1.8里面ConcurrentHashMap实现的区别
JDK8之前,ConcurrentHashMap使用锁分段技术,将数据分成一段段存储,每个数据段配置一把锁,即segment类,这个类继承ReentrantLock来保证线程安全
技术点:Segment+HashEntry
JKD8的版本取消Segment这个分段锁数据结构,底层也是使用Node数组+链表+红黑树,从而实现对每一段数据就行加锁,也减少了并发冲突的概率,CAS(读)+Synchronized(写)
技术点:Node+Cas+Synchronized
16、ConcurrentHashMap的put的核心逻辑(JDK8以上版本)
spread(key.hashCode()) 重哈希,减少碰撞概率
tabAt(i) 获取table中索引为i的Node元素
casTabAt(i) 利用CAS操作获取table中索引为i的Node元素
put的核心流程
1、key进行重哈希spread(key.hashCode())
2、对当前tabel进行无条件循环
3、如果没有初始化table,则用initTable进行初始化
4、如果没有hash冲突,则直接用cas插入新节点,成功后则直接判断是否需要扩容。
5、(fh = f.hash) == MOVED 如果是这个状态则是扩容操作,先进行扩容
6、存在hash冲突,利用synchronized (f) 加锁保证线程安全
7、如果是链表,则直接遍历插入,如果数量大于8,则需要转换成红黑树
8、如果是红黑树则按照红黑树规则插入
9、最后是检查是否需要扩容addCount()
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。