自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 Improving Conversational Recommender System by Pretraining Billion-scale Knowledge Graph

论文地址0、 摘要为了解决数据稀缺及冷启动问题,提出K-DCN(pretrain + fine-tune)方法。构建了一个10亿规模大小的会话知识图谱CKG。通过引入KGE和GCN来预训练,以编码语义和结构信息。为了使CTR预测模型能够感知用户的当前状态以及对话和项目之间的关系,引入了基于预训练CKG的用户状态和对话交互表示,并提出了K-DCN。1、 介绍主要任务:预测CTR。实现的两个步骤预训练CKG:采用KGE和GCN相结合方式。K-DCN:引入了第一步CKG中的用户状态表示和对话交

2021-06-05 16:27:08 255 1

原创 KECRS: Towards Knowledge-Enriched Conversational Recommendation System

原论文1、Abstract与以往CRS相比提出两种新的优化方式:BOE loss:提供了一个额外的监督信号来引导CRS从人类的书面话语和知识中学习。Infusion loss:链接词嵌入和实体嵌入更加拟合。2、Introduction2.1.以往CRS局限性:例如以往的KBRD,KGSF都是将recommender提到的内容作为推荐内容。重心放在了条目预测任务,而不是推荐任务。导致条目被重复推荐,影响用户体验。以前的方法产生的回复一般,为了生成多样化回复,引入了DBpedia、Con

2021-06-03 19:52:05 435 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除