C语言求17以后的5个质数,C语言求质数的算法

本文分析了六种不同的C语言实现质数判断算法,从基础的遍历法到优化的平方根法,再到更高级的埃拉托斯特尼筛法。通过在嵌入式平台上的性能测试,比较了它们的时间效率。尽管优化后的算法在理论上更优,但在实际运行中,由于sqrt函数的开销,某些优化方案并未明显提升速度。对于大规模数据,调整ARRAY_LEN的值可能会影响结果。文章展示了算法优化的过程,适合本科水平的学习者参考。
摘要由CSDN通过智能技术生成

上次被出了一题质数的C语言求解题目(面试),当时用了最粗暴的算法,回来仔细参考资料,其实答案有很多种:

1,小学生版本:

判断 x 是否为质数,就从 2 一直算到 x-1。

static rt_uint32_t array1[ARRAY_LEN];

void func1(void)

{

for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)

{

array1[i - 1] = 0;

}

rt_uint32_t x, y = 0, z = 0;

rt_uint32_t i = 0;

for (x = 2; x <= ARRAY_LEN; x++)

{

y = 0;

for (i = 1; i <= x; i++)

{

if (x % i == 0)

{

y++;

}

}

if (y == 2)

{

z++;

array1[x - 1] = x;

}

}

array1[0] = 1;

}

2,小学生毕业版:

x 如果有质因数,肯定会小于等于 x/2,所以捏,就从 2 一直到 x/2 即可。

static rt_uint32_t array2[ARRAY_LEN];

void func2(void)

{

for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)

{

array2[i - 1] = 0;

}

rt_uint32_t x, y = 0, z = 0;

rt_uint32_t i = 0;

for (x = 3; x <= ARRAY_LEN; x++)

{

y = 0;

for (i = 2; i <= x / 2; i++)

{

if (x % i == 0)

{

y++;

break;

}

}

if (y == 0)

{

z++;

array2[x - 1] = x;

}

}

array2[0] = 1;

array2[1] = 2;

}

3,初中生版:

除了2以外的质因数都是奇数。所以算从3开始一直到 x/2 的所有奇数。

static rt_uint32_t array3[ARRAY_LEN];

void func3(void)

{

for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)

{

array3[i - 1] = 0;

}

rt_uint32_t x, y = 0, z = 0;

rt_uint32_t i = 0;

for (x = 3; x <= ARRAY_LEN; x += 2)

{

y = 0;

for (i = 2; i <= x / 2; i++)

{

if (x % i == 0)

{

y++;

break;

}

}

if (y == 0)

{

z++;

array3[x - 1] = x;

}

}

array3[0] = 1;

array3[1] = 2;

}

4,高中生版:

其实只要从 2 一直尝试到根号x,就可以了。因为x只要有因数必定有一个因数小于等于根号x。

static rt_uint32_t array4[ARRAY_LEN];

void func4(void)

{

for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)

{

array4[i - 1] = 0;

}

rt_uint32_t x, y = 0, z = 0;

rt_uint32_t i = 0;

for (x = 3; x <= ARRAY_LEN; x++)

{

y = 0;

for (i = 2; i <= sqrt(x); i++)

{

if (x % i == 0)

{

y++;

break;

}

}

if (y == 0)

{

z++;

array4[x - 1] = x;

}

}

array4[0] = 1;

array4[1] = 2;

}

5,本科生版:

把上面的版本都综合起来

static rt_uint32_t array5[ARRAY_LEN];

void func5(void)

{

for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)

{

array5[i - 1] = 0;

}

rt_uint32_t x, y = 0, z = 0;

rt_uint32_t i = 0;

for (x = 3; x <= ARRAY_LEN; x += 2)

{

y = 0;

for (i = 2; i <= sqrt(x); i++)

{

if (x % i == 0)

{

y++;

break;

}

}

if (y == 0)

{

z++;

array5[x - 1] = x;

}

}

array5[0] = 1;

array5[1] = 2;

}

6,本科生毕业版本:

就是当i是质(素)数的时候,i的所有的倍数必然是合数。如果i已经被判断不是质数了,那么再找到i后面的质数来把这个质

数的倍数筛掉。

static rt_uint32_t array6[ARRAY_LEN];

void func6(void)

{

for (rt_uint32_t i = 1; i <= ARRAY_LEN; i += 2)

{

array6[i - 1] = i;

}

for (rt_uint32_t i = 3; i < sqrt(ARRAY_LEN); i+=2)

{

if (array6[i-1])

{

for(rt_uint32_t j=i<<2;j<=ARRAY_LEN;j+=i)

{

array6[j] = 0;

}

}

}

array6[1] = 2;

}

总结

分析了6个算法在我的嵌入式平台运行结果:

定义ARRAY_LEN = 1000;

func1

2513922

func2

221563

func3

213926

func4

762945

func5

674993

func6

14663

我们可以看到func4、func5并没有我们想象的那么节省时间,我想问题主要出在sqrt上面;sqrt本身是比较耗时的计算,然后func4与func5调用sqrt的次数又比较多;所以导致结果不太乐观。当然如果把ARRAY_LEN调大,可能结果又会不一样

至此,也就只是我本科毕业的水准了,后面还有更好的纯C算法可以告诉我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值