上次被出了一题质数的C语言求解题目(面试),当时用了最粗暴的算法,回来仔细参考资料,其实答案有很多种:
1,小学生版本:
判断 x 是否为质数,就从 2 一直算到 x-1。
static rt_uint32_t array1[ARRAY_LEN];
void func1(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array1[i - 1] = 0;
}
rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 2; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 1; i <= x; i++)
{
if (x % i == 0)
{
y++;
}
}
if (y == 2)
{
z++;
array1[x - 1] = x;
}
}
array1[0] = 1;
}
2,小学生毕业版:
x 如果有质因数,肯定会小于等于 x/2,所以捏,就从 2 一直到 x/2 即可。
static rt_uint32_t array2[ARRAY_LEN];
void func2(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array2[i - 1] = 0;
}
rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 2; i <= x / 2; i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array2[x - 1] = x;
}
}
array2[0] = 1;
array2[1] = 2;
}
3,初中生版:
除了2以外的质因数都是奇数。所以算从3开始一直到 x/2 的所有奇数。
static rt_uint32_t array3[ARRAY_LEN];
void func3(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array3[i - 1] = 0;
}
rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x += 2)
{
y = 0;
for (i = 2; i <= x / 2; i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array3[x - 1] = x;
}
}
array3[0] = 1;
array3[1] = 2;
}
4,高中生版:
其实只要从 2 一直尝试到根号x,就可以了。因为x只要有因数必定有一个因数小于等于根号x。
static rt_uint32_t array4[ARRAY_LEN];
void func4(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array4[i - 1] = 0;
}
rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 2; i <= sqrt(x); i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array4[x - 1] = x;
}
}
array4[0] = 1;
array4[1] = 2;
}
5,本科生版:
把上面的版本都综合起来
static rt_uint32_t array5[ARRAY_LEN];
void func5(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array5[i - 1] = 0;
}
rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x += 2)
{
y = 0;
for (i = 2; i <= sqrt(x); i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array5[x - 1] = x;
}
}
array5[0] = 1;
array5[1] = 2;
}
6,本科生毕业版本:
就是当i是质(素)数的时候,i的所有的倍数必然是合数。如果i已经被判断不是质数了,那么再找到i后面的质数来把这个质
数的倍数筛掉。
static rt_uint32_t array6[ARRAY_LEN];
void func6(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i += 2)
{
array6[i - 1] = i;
}
for (rt_uint32_t i = 3; i < sqrt(ARRAY_LEN); i+=2)
{
if (array6[i-1])
{
for(rt_uint32_t j=i<<2;j<=ARRAY_LEN;j+=i)
{
array6[j] = 0;
}
}
}
array6[1] = 2;
}
总结
分析了6个算法在我的嵌入式平台运行结果:
定义ARRAY_LEN = 1000;
func1
2513922
func2
221563
func3
213926
func4
762945
func5
674993
func6
14663
我们可以看到func4、func5并没有我们想象的那么节省时间,我想问题主要出在sqrt上面;sqrt本身是比较耗时的计算,然后func4与func5调用sqrt的次数又比较多;所以导致结果不太乐观。当然如果把ARRAY_LEN调大,可能结果又会不一样
至此,也就只是我本科毕业的水准了,后面还有更好的纯C算法可以告诉我。