(1)整体思想 98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
(2) 101 单纯上面那样遍历会结果为 91 也就是我们应该最后一个变为9的位置,从该位置向后应该全为9
class Solution {
public:
int monotoneIncreasingDigits(int n) {
string strNum = to_string(n); //将数字转为字符串,避免手动变为数组
int index = -1; //记录最后一个变成9的位置
for(int i=strNum.size()-1; i>0; i--){
if(strNum[i] < strNum[i-1]){
index = i;
strNum[i-1]--;
}
}
for(int i=index; i<strNum.size(); i++){
strNum[i] = '9';
}
return stoi(strNum);
}
};
968. 监控二叉树
思路:将监控放到父节点的位置—>后序遍历
(1) 子节点有一个为0也就是没有覆盖掉 那么该结点放监控 2
00 01 10 02 20
(2)子节点有一个为2, 该父节点变为 1
12 21 22
(3) 左右子节点都为1 该父节点值不变。 交给父节点的父节点处理
(4) 遍历结束后根节点为 0 则需要在根节点放监控
//0 表示没有被覆盖 1 表示被覆盖 2 表示防止监控
class Solution {
public:
int cnt = 0;
int minCameraCover(TreeNode* root) {
dfs(root);
if(root->val == 0) return cnt+1;
return cnt;
}
void dfs(TreeNode* root){
if(!root) return;
dfs(root->left);
dfs(root->right);
if(!root->left){
if(root->right){
if(root->right->val == 0){
root->val=2; cnt++;
}else if(root->right->val ==2){
root->val=1;
}
}
}else if(!root->right){
if(root->left->val == 0){
root->val=2; cnt++;
}else if(root->left->val ==2){
root->val=1;
}
}else{
if(root->left->val == 0 || root->right->val==0){
root->val=2; cnt++;
}else if(root->left->val==2 || root->right->val==2){
root->val=1;
}
}
}
};
有返回值版本 比树上直接判断更方便
class Solution {
public:
int cnt = 0;
int minCameraCover(TreeNode* root) {
int x = dfs(root); //记得承接返回值
if(x == 0) return cnt+1;
return cnt;
}
int dfs(TreeNode* root){ // 返回值为该结点状态 0 无覆盖 1 覆盖 2 防止监控
if(!root) return 1; //空结点 返回 1
int left = dfs(root->left); // 左结点状态
int right = dfs(root->right); // 右节点状态
if(left == 0 || right == 0){
cnt++;
return 2;
}
if(left == 2 || right == 2){
return 1;
}
if(left == 1 && right == 1){
return 0;
}
return -1;
}
};