day 38 一维动态规划

509. 斐波那契数
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

class Solution {
public:
    int fib(int n) {
        if(n==0) return 0;
        if(n==1) return 1;
        int x_1 = 0;
        int x_2 = 1;
        for(int i=2; i<=n; i++){
            int temp = x_1 + x_2;
            x_1 = x_2;
            x_2 = temp;
        }
        return x_2;
    }
};

70. 爬楼梯
F(1) = 1,F(2) = 2
F(n) = F(n - 1) + F(n - 2),其中 n > 1
当前台阶可以爬一个台阶 也可以是怕两个台阶上来的
所有当前的方法种类F(n)取决于 F(n - 1) + F(n - 2)

class Solution {
public:
    int climbStairs(int n) {
        if(n == 1) return 1;
        if(n == 2) return 2;
        int x_1 = 1;
        int x_2 = 2;
        for(int i=3; i<=n; i++){
            int temp = x_1 + x_2;
            x_1 = x_2;
            x_2 = temp;
        }
        return x_2;
    }
};

746. 使用最小花费爬楼梯
注意:爬到楼梯顶部是指爬到 下标cost.size()位置, 飞出数组

dp[i] 爬到第i台阶 需要的花费
dp[i] = min(dp[i-1] + cost[i-1], dp[i-2]+cost[i-2])
dp[0] = 0;
dp[1] = 0;

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int>dp(n+1, 0);
        for(int i=2; i<n+1; i++){
            dp[i] = min(dp[i-1] + cost[i-1], dp[i-2]+cost[i-2]);
            // cout<<dp[i]<<" ";
        }
        return dp[n];
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值